
Accelerating Containerized Machine Learning
Workloads

Ali Tariq∗†, Lianjie Cao†, Faraz Ahmed†, Eric Rozner∗, and Puneet Sharma†
∗University of Colorado Boulder, ∗Hewlett Packard Labs

Abstract—To facilitate various Machine Learning (ML) train-
ing and inference tasks, enterprises tend to build large and
expensive clusters and share them among different teams for
diverse ML workloads. Virtualized platforms (containers/VMs)
and schedulers are typically deployed to allow such access,
manage heterogeneous resources and schedule ML jobs in these
clusters. However, allocating resource budgets for different ML
jobs to achieve best performance and cluster resource efficiency
remains a significant challenge. This work proposes NEARCHUS to
accelerate distributed ML training while ensuring high resource
efficiency by using adaptive resource allocation. NEARCHUS
automatically identifies potential performance bottlenecks for
running jobs and re-allocates resources to provide optimized
run-time performance with high resource efficiency. NEARCHUS’s
resource configuration significantly improves the training speed
of individual jobs up to 71.4%–129.1% against state-of-the-art
resource schedulers, and reduces job completion and queuing
time by 35.6% and 67.8%, respectively.

Index Terms—Machine Learning, Cloud Computing, Resource
virtualization and management

I. INTRODUCTION

Distributed training ML models is resource-intensive and
time-consuming, especially as model sizes and training
datasets grow. These distributed training techniques can run
on dedicated enterprise clusters with heterogeneous resources
(e.g., CPU, GPU, TPU, FPGA, or SmartNICs [1]) or even on
multi-tenant clouds. Container platforms and schedulers (e.g.,
Kubernetes and OpenPAI) are increasingly adopted to manage
ML clusters for better flexibility, scalability, and elasticity.

To reduce costs, clusters can be shared among tenants for
running ML jobs with assigned resource budgets. However,
assigning and managing resources for these jobs can be chal-
lenging. Consider a Parameter Server (PS)-based distributed
ML training job that contains different types of training nodes
(e.g., chief, parameter servers, workers, and evaluators [2]).
Each node in the PS architecture [3] is assigned a set of
tasks, and hence training nodes may exhibit distinct resource
requirements and resource usage. Simple resource configura-
tions such as equal resource allocation may waste resources on
some nodes, while overloading resources on other nodes, all
leading to sub-optimal training performance and resource effi-
ciency. Even training nodes of the same type may experience
unbalanced task assignment [4], which further complicates
the resource management problem. Configuring resources for
ML training jobs is tedious and error-prone because the best
resource configuration often changes for different ML jobs. As
ML becomes more broadly applicable, users without enough

domain knowledge may struggle to configure resources opti-
mally. The problem becomes more challenging in multi-tenant
container platforms, where sophisticated resource management
and job scheduling [5], [6] are needed to deal with ever-
increasing resource demands and varying resource availability.

We propose NEARCHUS to automatically find the best
resource configuration for distributed ML training jobs. With
PS distribution strategy, NEARCHUS determines the number
of parameter servers and workers and their resource allocation
(referred as DT-config) to achieve high resource efficiency and
training performance. Instead of assigning the entire resource
budget at once, NEARCHUS launches a training job with a
subset of a resource budget and quickly and intelligently ramps
up. This work-conserving approach improves overall resource
utilization and reduces job queuing time. NEARCHUS con-
tinuously tracks training performance, compute and network
utilization, and automatically adjusts DT-config to achieve
better resource utilization and training performance.

We conduct performance benchmarking (§III) with multiple
Deep Neural Networks (DNNs) using different DT-configs and
observe resource utilization is the dominant indicator of train-
ing performance. We identify two performance bottlenecks
(maximum utilization bottleneck and parameter server bottle-
neck) that can evaluate existing DT-configs. NEARCHUS auto-
matically detects such performance bottlenecks and adapts in
order to achieve better resource utilization and training perfor-
mance(§IV). Compared to performance modelling approaches
([7], [8]), NEARCHUS does not require any prior knowledge
or pre-training process, which eliminates significant modelling
overhead and complements other workload-level optimizations
(e.g., PS load distribution [4] and pipeline parallelism [9],
[10]) without modifications. We evaluate NEARCHUS using a
diverse set of models (§V) to show the benefits against other
solutions. This paper makes the following contributions:
• We present a measurement study of containerized ML train-

ing jobs showing how major bottlenecks can affect training
performance. These bottlenecks are not addressed by the
state-of-the-art modeling-based solution, Optimus [7].

• We design NEARCHUS that automatically detects and ad-
dresses various performance bottlenecks to achieve better
training speed without incurring extra profiling overhead.

• We present system evaluation, NEARCHUS increases train-
ing speed up to 129%, and reduces job completion and
queuing time by 35% and 67% in single-job and multi-job
scenarios against Optimus and exhaustive search.

II. RELATED WORK

Distribution strategies for ML training. There are several
different ways to distribute ML training workload on multi-
ple compute devices including data parallelism (e.g., AllRe-
duce [11] and Parameter Server [3]) and model parallelism
(e.g., pipeline parallelism [12] and tensor parallelism [13]). As
a popular distribution strategy, significant efforts have been
made to improve the parameter server distribution strategy.
Previous works [3], [7], [14] have shown that the number
of workers and parameter servers can directly impact the
performance of model training and tried to determine the
optimal distributed configuration based on various key met-
rics. Cruise [14] presents a cost-based optimization model
to automatically find a good combination of workers and
parameter servers along with model and data partitions for
parameter servers. PLSD [4] and Parameter Service [15] focus
on addressing run-time performance bottlenecks of parameter
servers. These works use fixed resource allocation and only
modify the number of workers and parameter servers. Opti-
mus [7] and SLAQ [8] perform dynamic resource allocation
and allocate resources among workers and parameter servers
based on the quality improvements (e.g., training loss) of
ML models at run-time to achieve better resource efficiency.
However, prior work has shown that loss-based prediction
models can yield inaccurate results [16] which is further
confirmed by our evaluation. In contrast, NEARCHUS performs
dynamic resource allocation by monitoring resource utilization
and does not depend on any pre-trained performance models.
Resource management for distributed ML training. As
accelerators (e.g., GPU and TPU) are increasingly adopted
to accelerate ML workload, there has been a large body of
work proposed to efficiently allocate accelerator resources for
distributed ML training jobs. Tiresias [16] efficiently sched-
ules deep learning jobs to reduce their job completion times
(JCTs). Gandiva [17] exploits intra-job predictability to time-
slice GPUs efficiently across multiple jobs, thereby delivering
low latency and higher resource utilization. AntMan [18],
Salus [19], HiveD [20], and GSLICE [21] are systems that
enable sharing of GPU resources among training jobs by
incorporating dynamic GPU resource sharing to maximize
performance. Despite the wide adoption of GPU resources for
running distributed ML jobs, dynamic and fine-grained GPU
sharing on container platforms is still not mature.

Meanwhile, CPUs remain the preferred compute resource
for many ML workloads, especially those that cannot be highly
parallelized, require large memory, or have stringent cost
limits [22]. Sparsh [23] highlights various benefits of using
CPUs for DNN workloads and proposes various techniques
for both inference and training, for optimizing model execu-
tion in the context of mobile, desktop/server, and distributed
systems. CPUs can also enable wider and deeper network
structures [24], [25], [26]. Training sparse DNNs can be highly
inefficient on massively parallel processors [27], [28] because
of their irregular memory accesses and inability to leverage
optimizations such as cache tiling and vectorization, leading to

Cluster Servers CPU Memory Network
A 9 2x Intel E5-2660v3 10-core 128 GB 1 Gbps
B 9 2x Intel Xeon 8375C 32-core 256GB 50 Gbps
C 4 2x Intel Xeon 6142 16-core 384 GB 10 Gbps
D 22 2x Intel E5-2660v3 10-core 128 GB 10 Gbps

TABLE I: Testbed configuration.

inefficient GPU utilization. Meta adopted the parameter server
architecture with CPU-based training for Deep Learning Rec-
ommendation Models in one of their production systems [29].
Furthermore, RNNs are difficult to parallelize [30] due to the
dependencies between the steps. CPUs are preferred in such
cases and may even outperform accelerators [31] with limited
parallelism because of their advanced memory management.
Due to this widespread CPU application and maturity of CPU
virtualization, we restrict NEARCHUS to CPUs only.

III. MEASUREMENT STUDY

We start with a measurement study that aims to answer
the following questions: 1) what determines training speed
(§III-A)?, 2) what factors affect the training speed (§III-B)?,
3) how to allocate the given resource budget (§III-C)?. For
ease of discussion, we use (nps, nwk) to denote a resource
configuration of nps parameter server nodes and nwk worker
nodes for a training job, nps + nwk training nodes in total.

We use multiple clusters shown in Table I) for experiments.
DNN models are developed using TensorFlow and training
jobs are executed using Kubernetes and Kubeflow.
A. What determines training speed?

ML training jobs often use distributed strategies and previ-
ous works [7], [14] optimize resource configuration of PS-
based distributed training jobs by changing the number of
parameter server and worker nodes. For example, Optimus [7]
demonstrates the relationship between resource configuration
and training speed and aims to find an optimal combination
for worker and parameter server nodes. We argue that such
resource configuration may not accurately capture the per-
formance characteristics of distributed training jobs. We first
reproduce Optimus [7] results by training the ResNet-50 model
with a fixed total number (i.e., 8) of parameter server and
worker nodes, each of which is allocated with 2.5 vCPUs.

The experiments are conducted on Cluster A, and each
training node is placed on a dedicated server to avoid potential
resource contention. We repeat the same training job by
changing the relative number of parameter server and worker
nodes while ensuring the total number of training nodes
remains 8. Figure 1a shows the normalized training speed
and corresponding CPU usage. We see linearly decreasing
training speed as the number of worker nodes decrease or the
number of parameter server nodes increase (green diagonal
values), which aligns with Optimus’ findings. We then ex-
tend experiments to cover more resource configurations with
fewer than 8 worker and parameter server nodes in total
(green upper triangle values). We observe configurations with
different numbers of parameter server nodes but the same
number of worker nodes yields similar training speeds. This
confirms the aforementioned relationship between number of

worker nodes and training speed. However, we also find a
similar relationship between total CPU utilization and training
speed (blue values in Figure 1a). Therefore, we modified the
experiments to confirm which one, # of PS/WK nodes or CPU
utilization, is the dominant factor of training speed.

(a) Pod allocation (b) Component allocation
Fig. 1: Normalized training speed (steps/sec) and CPU utilization.
We reuse the same set of resource configurations, i.e., the

total number of parameter server and worker nodes is less
than 8, and keep the total resource allocation of 20 vCPUs.
However, the resource allocation per training node is no longer
a fixed value of 2.5 vCPUs. We vary the allocation of the
20 vCPUs among parameter server and worker nodes. For
example, we tested 1 vCPU for parameter server nodes and 19
vCPUs for worker nodes, 5 vCPUs for parameter server nodes
and 15 vCPUs for worker nodes, and 10 vCPUs for parameter
server nodes and worker nodes respectively. vCPUs are evenly
distributed among parameter server or worker nodes. In the
case of 1 vCPU for parameter server nodes and 19 vCPUs
for worker nodes and resource configuration (2ps, 6wk), each
parameter server node and worker node get 0.5 vCPU and 3.17
vCPUs respectively. Figure 1b shows the training speed and
CPU utilization for the modified experiments with 1 vCPU for
parameter server nodes and 19 vCPUs for worker nodes. With
the same set of resource configurations, we observe that the
training speed is no longer in a linear relationship with the
number of workers as shown in Figure 1a. However, training
speed still has a strong correlation with CPU utilization.

6
12

18
24

0 15 30 45 60

0.
2

0.
4

0.
6

C
P
U

 u
ti

liz
a
ti

o
n

S
p

e
e
d

 (
st

e
p

s/
s)

Allocation (vCPU)

Utilization
Speed

(a) (1ps, 2wk)

20
40

60
80

0 45 90
135

180

0.
5

1.
0

1.
5

C
P
U

 u
ti

liz
a
ti

o
n

S
p

e
e
d

 (
st

e
p

s/
s)

Allocation (vCPU)

Utilization
Speed

(b) (10ps, 11wk)

Fig. 2: Training speed and CPU utilization for two configurations.

To further confirm our observation, we scale the experi-
ments and run them on a larger cluster — Cluster D with
22 servers. We tested two different resource configurations
(1ps, 2wk) and (10ps, 11wk). We selected (1ps, 2wk) as it
is the smallest configuration and (10ps, 11wk) as it is one of
the largest configurations that fit on Cluster D while keeping
one training node per server. Figure 2 shows how training
speed increases linearly with CPU utilization. This confirms a
strong correlation between CPU utilization and training speed
of the same job irrespective of the resource configuration (i.e.,
number of parameter server and worker nodes).

Our experiments show that training speed has a strong cor-
relation with CPU utilization. Previous works improve training

speed by finding the best resource configuration with fixed per-
node CPU allocation. However, this approach only indirectly
enhances training speed, as not all allocated resources can be
efficiently utilized (as shown in Figure 1). Additionally, the
resource configuration can only be adjusted by one training
node per iteration, resulting in a long search process (e.g.,
Optimus adds one parameter server node or worker node
with 5 vCPUs every 10 minutes [7]). Therefore, we need a
new resource configuration solution that can directly improve
resource utilization and accelerate the process of identifying
the best resource configuration.

In summary, compute resource utilization is the dominant
indicator of training speed. To improve the training speed of
a given job, we must improve resource utilization.
B. What causes performance degradation?

In this subsection, we try to identify the performance
bottlenecks that hinder parameter server-based ML training
jobs from efficiently utilizing the allocated vCPUs. We use
these insights as guidelines to design NEARCHUS in §IV.
Maximum Utilization Bottleneck. We start our analysis
by running a single-worker training job of training ResNet-
50 [32] on CIFAR-10 [33] dataset without any distribution
strategy. We repeat the same training job on 20-core, 32-core,
and 64-core servers and observe the CPU utilization increases
with more compute resources allocated to the worker node.
But it stagnates at 16 vCPUs, 21 vCPUs, and 37 vCPUs before
reaching the maximum capacity as shown in Figure 3.

10
14
18

10 12 14 16 18

20core

C
P
U

 u
ti

li
z
a
ti

o
n

10
20
30

10 12 14 16 18 20 22 24 26 28 30

32core
C

P
U

 u
ti

li
z
a
ti

o
n

10

35

60

10 . . 16 . . 22 . . 28 . . 34 . . 40 . . 46 . . 52 . . 58

Allocation (vCPU)

64core

C
P
U

 u
ti

li
z
a
ti

o
n

Fig. 3: Single-worker MU.

This limitation can be at-
tributed to maximum par-
allelism limits [34] of sin-
gle TensorFlow process [35]
(recent work [36] details
these topics). We identify
this limitation as Maximum
Utilization Bottleneck (MU-
bottleneck) which limits the
performance of individual
workers in training jobs.

42

46

50

54

58

2 3 4 5 6 7 8 9 10

C
P
U

 u
ti

liz
a
ti

o
n

of workers

64core

Fig. 4: Multi-worker MU.

We then repeat the same
ResNet-50 training job with pa-
rameter server distribution strat-
egy on a 64-core server. We keep
one parameter server node while
increasing the number of worker
nodes. The parameter server node
is allocated with fixed 5 vCPUs
to ensure that it does not become the bottleneck. All worker
nodes evenly share the rest 59 vCPUs; hence each worker
node is allocated with fewer vCPUs as we increase the
number of worker nodes. Figure 4 shows how CPU utilization
increases from 37 vCPU for a single worker to 46 vCPU for
2 workers and to 57 vCPU for 10 workers. This shows that
MU-bottleneck is a relative value that is mainly caused by
the multiprocessing overhead of ML frameworks (e.g., Ten-

sorFlow) and, may further depend on several environmental
factors such as server configuration, OS, dependent libraries,
and the ML model. However, this can be avoided by adding
more training nodes or dynamically allocating node resources.
Parameter Server Bottleneck. In distributed training, param-
eter server nodes may become overloaded when training large
ML models, requiring up-scaling to achieve the desired train-
ing performance. We classify it into two categories, parameter
server compute bottleneck (PSC-bottleneck) and parameter
server network bottleneck (PSN-bottleneck).
PSC-bottleneck. For a given training job and compute resource
budget, over-provisioning parameter server nodes can lead to
inefficient resource utilization due to the MU-bottleneck while
the idle resources could have been utilized by the worker
nodes more efficiently. However, if parameter server nodes are
under-provisioned, it not only slows down PS-related tasks but
may also cause worker nodes to wait longer for the updated
model parameters, which we identify as PSC-bottleneck. Both
scenarios result in sub-optimal training speed. Striking the
right balance is crucial, but also challenging. Furthermore,
adding compute resources (i.e., scaling up) to the same
parameter server nodes may encounter the aforementioned
MU-bottleneck, while adding parameter server nodes (i.e.,
scaling out) may experience the parameter server straggler
problem [4] that results in unequal resource requirements of
different parameter server nodes.
PSN-bottleneck. Parameter server nodes pull and push gradi-
ents from/to worker nodes to update model parameters through
communication channels across network links. To understand
the impact of network links, we run ResNet-50 training job
with (1ps, 2wk) in two different scenarios: SameNode (SN)
with all training nodes co-located on the same server and
DiffNode (DN) with each training node allocated to a dedicated
server. Since all training nodes are placed on the same server in
SameNode, we ensure no network-related bottleneck. We re-
peat the experiments with 2 types of networks (i.e., 1 Gbps and
10 Gbps Ethernet) and 3 server configurations (i.e., 20-core,
32-core, and 64-core servers). Figure 5a shows the results.
With restricted network bandwidth (i.e., 1 Gbps), the resource
efficiency of DiffNode is significantly lower than SameNode.
Note that although the total CPU utilization of SN-1G and
DN-1G may not be very different, the total CPU allocation of
DiffNode is 3 × SameNode as each training node is assigned
to a dedicated server. For example, in DN-1G-64core,
only 33 vCPUs out of 196 vCPUs are utilized. Each worker
node can only utilize 16 vCPUs due to the impact of both
MU-bottleneck and PSN-bottleneck. With 10 Gbps network
bandwidth, we observe increased resource utilization when
comparing DiffNode to SameNode as PSN-bottleneck is no
longer present. However, there is still a large amount of
allocated resources not utilized due to the MU-bottleneck.
For example, in DN-10G-64core, a worker node used
36 vCPUs, increased from 16 vCPUs in DN-1G-64core,
which corresponds to our observation in the MU-bottleneck
experiments. Since there is no external network traffic in

SameNode, the results of SN-1G and SN-10G are identical on
the three server sizes. However, when comparing DN-10G to
DN-1G, we observe ∼17.7%, ∼53.5% and ∼53.4% decrease
in CPU utilization on 20-core, 32-core, and 64-core servers
respectively, which is mainly caused by the PSN-bottleneck.

The parameter server can be scaled out when training large
ML models and to understand the impact of increasing param-
eter server nodes, we run a new set of experiments in which we
compare 1 parameter server node (1ps, ∗wk) and 10 parameter
server nodes (10ps, ∗wk) on 1 Gbps network. We gradually
increase the number of worker nodes from 2 to 11 and each of
them is placed on a dedicated server, with 3 vCPUs allocated
to conservatively avoid MU-bottleneck. Figure 5b shows the
CPU utilization of all (ps, wk) pairs. As the number of worker
nodes increases, the resource utilization of (1ps, ∗wk) starts
to stagnate at (1ps, 8wk) while the resource utilization of
(10ps, ∗wk) shows continuous linear increments. It is mainly
because the network traffic is spread across all parameter
server nodes reducing per-node workload. This shows how
we can reduce the impact of the PSN-bottleneck by carefully
placing the parameter server nodes on different servers.

0

30

60

90

SN DN SN DN

C
P
U

 u
ti

liz
a
ti

o
n 20-Core

32-Core
64-Core

1G 10G

(a) SameNode and DiffNode
using 1Gbps vs 10Gbps links.

6

18

30

6 9 12 15 18 21 24 27 30 33

C
P
U

 u
ti

liz
a
ti

o
n

Allocation (vCPU)

1ps
10ps

(b) Single vs multiple param-
eter servers using 1Gbps link.

Fig. 5: Parameter server bottleneck.

In summary, ML training jobs can encounter various per-
formance bottlenecks that reduce CPU utilization and training
speed. Identifying and addressing such bottlenecks can help
improve training performance.
C. How to allocate the given resource budget?

We consider the most common scenario of a containerized
cluster shared by multiple tenants. Each tenant submits ML
training jobs associated with resource budgets, which are
stored in a job queue. The cluster resource manager determines
when to launch a training job, how to allocate the given
resource budget to parameter server and worker nodes, and
where to place them. Most existing works [7], [37], [38], [39]
address this problem by formulating optimization problems
or building mathematical performance models. However, such
model-based solutions may introduce significant modeling
and profiling overhead and the performance models may not
always provide accurate results during runtime. We will further
illustrate this point using Optimus [7] as a specific example.

For a given job, Optimus requires a pre-training stage to fit
a model for calculating the remaining steps, and a resource-
speed model for calculating the duration of one training
step regarding the number of parameter server and worker
nodes. It requires running the training job with 10 different
(ps, wk) configurations to obtain an accurate resource-speed

model. To evaluate Optimus, we run 5 jobs, each of which
trains a unique ML model, i.e., MobileNet, DenseNet-201,
NasNetLarge, ResNet-50, and InceptionV3. To ensure the
quality of the resource-speed model, we used 20 different
(ps, wk) configurations in the profiling stage for each job.
Then we run the training job with the fitted performance
models and a resource budget of 100 vCPUs. We observe that
MobileNet and DenseNet-201 achieved 82% and 86% resource
efficiency, while NasNetLarge, ResNet-50, and InceptionV3
only achieved 63%, 43%, and 21% resource efficiency. Our
analysis shows the three larger ML models encountered PSN-
bottleneck in the middle of the training process as more
training nodes were added. This was not accurately captured
by the performance models because the profiling stage needs to
make a trade-off between completeness and overhead; hence,
performance models may fail to capture all possible situations
during training, leading to sub-optimal configuration decisions.

In summary, avoiding performance bottlenecks is critical
when allocating resource budgets. However, such bottlenecks
can be dynamic and difficult to predict in multi-tenant clusters,
which is why model-based solutions are unable to capture
them despite additional profiling overhead.

IV. NEARCHUS DESIGN

To address the aforementioned performance bottlenecks
and circumvent the limitations of model-based solutions, we
propose NEARCHUS that detects various performance bottle-
necks in real-time training and adaptively allocates compute
resources to parameter server and worker nodes to achieve
high resource utilization and desired training performance.
NEARCHUS extends the definition of resource configuration to
consider both the number of training nodes and their resource
allocation, referred to as DT-config (nps, nwk, rps, rwk), where
nps, nwk, rps, and rwk are the number of parameter server and
worker nodes and the resources allocated to them respectively.
As a result, the search space for the best DT-config becomes
much larger. NEARCHUS aims to find the DT-config that
yields the highest resource utilization through an iterative
and directed search process. Similar to Optimus, NEARCHUS
launches a training job with a subset of the given resource
budget with an initial DT-config and iteratively adds more
resources to the training job until the resource budget is
reached. Therefore, NEARCHUS can launch a training job
when only part of the resource budget is available, which
reduces the job queuing time caused by gang scheduling [6].

Different from model-based solutions, NEARCHUS doesn’t
profile or train performance models for allocating resources.
Instead, it detects different performance bottlenecks in real
time and adjusts the current DT-config to resolve them (i.e.,
scaling out). If no performance bottleneck is detected, the
current DT-config is considered appropriate and NEARCHUS
increases the resource allocation (i.e., scaling up). Different
from Optimus which adds one training node per iteration,
NEARCHUS accelerates the scaling-up process by performing
multiplicative increase. This process iterates until no further

(a) NEARCHUS architecture (b) NEARCHUS workflow
Fig. 6: NEARCHUS design.

improvements in resource utilization can be achieved and the
last DT-config is used till the end of the training job. Figure 6
shows the architecture and workflow of NEARCHUS.
Resource Scaling Up. NEARCHUS launches a new training
job with a proportion, R0, of the resource budget, Rmax. R0

is uniformly distributed to each training node of (1ps, 2wk);
hence, the initial DT-config is (1, 2, R0/3, 2R0/3). Metric
Collector collects resource utilization metrics and training
statistics of running jobs. For effective scheduling, it is cru-
cial to ensure that the metrics are stable and reliable for
detecting performance bottlenecks. When starting new jobs in
a shared environment, it takes time for metrics to stabilize
due to resource contention and cold starts [40]. Stability
Detector applies a strict coefficient-of-variance (CV < 5%)
for Ncomp = 5 consecutive samples to decide whether a
training job is stabilized (5 to 8 minutes) based on two major
metrics: compute resource utilization and training speed.

Once stabilized, the Scaling Engine aggregates the compute
resource utilization of all training nodes and calculates the
current overall compute resource efficiency of the training
job. Let ui denote the resource utilization of a training node
i ∈ {1, 2, ..., nps + nwk} and let ai denote the resource
assignment of node i, then the resource efficiency is defined
as ejob =

∑
i ui∑
i ai

. If ejob ≥ Ethd job (Ethd job = 0.95

default threshold), we consider the current DT-config is not
experiencing any performance bottleneck and all allocated
resources are efficiently utilized by the training job. Hence,
NEARCHUS increases the resource allocation by a configurable
scale-up ratio Rup (Rup = 50% by default) that controls how
aggressively resources scale. If the available resources in the
cluster are less than the requested amount, the training job
will only be scaled up with the available resources. Initially,
the allocated resources are equally assigned among all training
nodes, but the assignment may be adjusted later. The resources
added by scaling-up decisions are proportionally added to each
training node based on the previous resource assignments.
DT-config Scaling Out. Due to previously mentioned per-
formance bottlenecks, the performance of a training job may
not increase linearly with resource scaling up. For example,
if worker nodes are assigned more resources than the MU-
bottleneck, the training job is unable to efficiently utilize the
allocated resources, leading to undesired training performance.
This also wastes resources that potentially can be allocated
to other training jobs. NEARCHUS detects the occurrence
of performance bottlenecks by monitoring compute resource

efficiency, i.e., ejob < 0.95, and addresses them by scaling
out the current DT-config. DT-config scaling out is designed
to handle the MU-bottleneck and PSN-bottleneck by adding
worker and parameter server nodes respectively.

When a performance bottleneck occurs, the Scaling Engine
needs to identify the type of the bottleneck. It first polls
Nnet (Nnet = 30 by default) network utilization samples of
each parameter node since the most recent scaling decision
from Metric Collector. If more than 10% of the samples of
a parameter server node are greater than 90% of the cluster
network capacity, NEARCHUS considers PSN-bottleneck is
detected. Hence, we scale out DT-config by adding a new
parameter server node to re-balance the workload and network
traffic to address this bottleneck. If the PSN-bottleneck is not
detected, we consider the low compute resource efficiency is
caused by the MU-bottleneck which means the worker nodes
are allocated more resources than they can efficiently utilize.
Hence, we scale out DT-config by adding a worker node and
evenly redistributing the resource assignment among the same
type of nodes, i.e., rps/nps or rwk/nwk, so each training node
is assigned with less resources.
Resource Assignment Adjustment. Parameter server nodes
use much less compute resources than worker nodes and
their workload may not be evenly distributed depending on
the tensor sizes of ML models. Additionally, ML framework
(e.g., TensorFlow) may adopt dynamic task scheduling on
worker nodes at runtime. Therefore, the resource requirements
of training nodes are not equal. For a given (nps, nwk), the
Resource Optimizer adjusts the assignment of the current
resource allocation. The resource assignment adjustment hap-
pens at two levels: node level and component level (i.e., pa-
rameter server and worker). Resource Optimizer computes re-
source efficiency of each training node periodically, ei = ui

ai
. If

ei is less than a predefined threshold Ethd opt (Ethd opt = 0.8
by default), the node-level adjustment is triggered. The goal
of node-level adjustment is to balance the resource efficiency
of all training nodes of the same component by reclaiming
idle resources from nodes with lower resource efficiency and
redistributing them to other nodes proportionally. A successful
node-level adjustment triggers component-level adjustment.
Similarly, Resource Optimizer first computes the resource
efficiency of the two components, eps and ewk, and compares
to Ethd opt. If eps or ewk is smaller than Ethd opt while the
other is larger than Ethd opt, it means one component has idle
resources that can be utilized more efficiently by the other
component. Hence, we need to redistribute resources between
parameter server nodes and worker nodes. If both eps and ewk

are smaller or larger than Ethd opt, no component-level adjust-
ment is needed. Idle resources are extracted from all nodes of
the component with lower resource efficiency proportional to
their resource assignment. The extracted resources are then
proportionally added to the nodes of the other component. We
assume the resource assignment of training nodes of the same
component is already balanced during node-level adjustment,
which is why node-level adjustments are executed first.

Model # parameters Network Application Domain
MobileNet [41] 4.2M CNN Image classification
DenseNet-201 [42] 20M CNN Image classification
NasNetLarge [43] 84.9M CNN Image classification
ResNet-50 [44] 23M CNN Image classification
Inception-V3 [45] 24M CNN Image classification
CycleGAN [46] 28M Transformer Image generation
GNN application [47] 22K GNN Time series forecast
GPT using KerasNLP [48] 3.3M Transformer Text generation
Vision Transformer (ViT) [49] 21.7M Transformer Image classification
Bidirectional LSTM [50] 2.7M RNN Sentiment classification

TABLE II: Models used in evaluation.

System Implementation. We implement NEARCHUS in
Python as a standalone job scheduler and resource manager,
running on top of Kubernetes and Kubeflow. NEARCHUS
uses a multi-queue system where the incoming training jobs
first arrive in the waiting queue. Once the resources become
available, Resource Allocator moves the job from waiting
queue to running queue and launches the new job using R0

compute resources equally assigned among the training nodes.
Metric Collector keeps collecting the metrics for all jobs in
the running queue. By default, Resource Allocator uses an
FCFS policy to schedule the jobs in waiting queue and running
queue, but it can be modified to use any other independent
scheduling policy (e.g., shortest job first) to better server to
the needs of the incoming workloads. When a training job is
completed, Resource Allocator moves it from running queue
to the finished queue. Jobs are kept in finished queue along
with its metrics until they can be moved to the logging archive.

V. EVALUATION

We evaluate NEARCHUS in two scenarios, single training
job and multiple training jobs, with ML models listed in
Table II. We compare NEARCHUS with two solutions, Op-
timus and exhaustive search, using job completion time (JCT)
in hours and training speed in steps/sec. We also present
microbenchmarks for understanding the impact of various
configurable parameters in NEARCHUS. Cluster A (100 vCPUs
compute resources and 1 Gbps network) and Cluster B (300
vCPUs and 50 Gbps network) from § III are used to represent
resource-constrained and resource-abundant clusters.
Optimus. We run profiling to derive the performance models
for Optimus on both Cluster A and B using a maximum of
20 and 60 training nodes respectively. Each training node is
allocated with fixed 5 vCPUs. Similar to § III-C, we use 20
configurations for profiling, more than Optimus [7] suggested.
Fixed-allocation brute force (FA-BF). FA-BF represents the
best (nps, nwk) identified through an offline exhaustive search.
It uses 5 vCPUs per training node, the same as Optimus;
hence, it can be considered the best achievable performance
by Optimus. Note that FA-BF use the same static (nps, nwk)
the entire training process, which is different from the online
search of Optimus and NEARCHUS.
A. Single-job Training

We first evaluate NEARCHUS when only one training job is
executed at a time to limit resource contention between jobs.
We use 5 different popular CNN models, each of which is
allocated with the same resource budget of 100 vCPUs for

Cluster A and 300 vCPUs for Cluster B. Note that, we do not
include the profiling stage for Optimus when comparing JCT.

15

4

8

12

Mobile
Net

DenseNet

NasN
etLarge

ResN
et-5

0

Inceptio
nV3S

p
e
e
d

 (
st

e
p

s/
s)

FA-BF
Optimus

Nearchus

(a) Training performance

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

Mo
bil
eN
et

De
ns
eN
et

Na
sN
etL
arg
e

Re
sN
et-
50

Inc
ep
tio
nV
3

J
C
T

FA-BF Optimus Nearchus

(b) Normalized JCT
Fig. 7: NEARCHUS evaluation in cluster A.

Figure 7a shows the best training speeds achieved by all
solutions in Cluster A. NEARCHUS outperforms Optimus by
up to 71.4% and 129.1% for ResNet-50 and InceptionV3.
NEARCHUS also achieves 18.3% and 19.9% improvement
compared to FA-BF for MobileNet and Resnet-50. Although
FA-BF represents the best possible (nps, nwk), NEARCHUS
yields better training speed by performing finer-grained re-
source adjustments among all training nodes. For JCT shown
in Figure 7b, FA-BF has the shortest JCT because it uses
the total job budget from the beginning. In contrast, Optimus
and NEARCHUS start with (1ps, 2wk) and 15 vCPUs and
ramp up the allocation while searching for the best DT-config.
NEARCHUS achieves up to 37.2% reduction of JCT when
compared to Optimus for ResNet-50.

0.5

1

1.5

2

2.5

 0 20 40 60 80
 100

 120
 140

 160
 180

S
p

e
e
d

 (
st

e
p

s/
s)

Time (min)

Nearchus
Optimus

(a) Cluster A

’

2

4

6

8

10

 0 20 40 60 80
 100

 120
 140

 160
 180

S
p

e
e
d

 (
st

e
p

s/
s)

Time (min)

Nearchus
Optimus

(b) Cluster B
Fig. 8: Evolution of training speeds for ResNet-50.

NEARCHUS is able to effectively utilize its multiplicative
scaling strategy because of the reactive approach and fine-grain
resource assignment, that collectively allows training jobs to
reach the resource budgets much faster without causing re-
source waste. Figure 8 compares how training speed improves
over time for ResNet-50 between Optimus and NEARCHUS.
NEARCHUS improves the training speed at a much faster
pace which helps the job finish faster. This explains why
NEARCHUS is able to achieve smaller JCT even for training
jobs that have similar peak training speeds. Figure 8b shows
the same job running on Cluster B. We see much smoother
convergence curves in this case because of fewer performance
bottlenecks in resource abundant environment.

0

15

30

45

Mobile
Net

DenseNet

NasN
etLarge

ResN
et-5

0

Inceptio
nV3S

p
e
e
d

 (
st

e
p

s/
s)

FA-BF
Optimus

Nearchus

(a) Training performance

 0
 2
 4
 6
 8

 10

Mo
bil
eN
et

De
ns
eN
et

Na
sN
etL
arg
e

Re
sN
et-
50

Inc
ep
tio
nV
3

J
C
T

FA-BF Optimus Nearchus

(b) Normalized JCT
Fig. 9: NEARCHUS evaluation in cluster B.

Figure 9 shows the training speeds and JCT for Cluster B.
Since Cluster B has large resources, there are fewer perfor-
mance bottlenecks for the profiling stage of Optimus and the
training stage of all three solutions. Hence, the performance
models of Optimus work well. Figure 9a shows similar peak
training speeds achieved by FA-BF, Optimus, and NEARCHUS.
However, as shown in Figure 9b, NEARCHUS outperforms
Optimus for all 5 CNN models, reducing the JCT by up
to 61.6% (NasNetLarge). This is mainly due to the additive
increase of adding one training node per iteration by Optimus.

 0

 5

 10

 15

 20

Cycle
GAN

GNN
GPT ViT

LSTMS
p

e
e
d

 (
st

e
p

s/
s)

Optimus
Nearchus

Fig. 10: Training speed
of non-CNN models.

In addition to CNN models,
we also evaluated NEARCHUS
with other types of ML models
against Optimus, including graph
neural network (GNN), genera-
tive adversarial network (Cycle-
GAN), language models (GPT),
vision transformer (ViT), and
RNN (LSTM). Figure 10 show NEARCHUS outperforms Op-
timus by a minimum of 14.4% for LSTM, and up to 55.6%
for the GPT model, on Cluster A.

B. Multi-job Training
In production, ML training jobs are often submitted by dif-

ferent tenants sharing the same cluster. And those training jobs
may run in parallel to maximize cluster resource efficiency.
In this subsection, we evaluate NEARCHUS in such multi-job
environment with synthetic job traces.

0

2

4

6

FA
-BF
Op
tim
us

Ne
arc
hus

FA
-BF
Op
tim
us

Ne
arc
hus

J
C
T

 (
h
o
u
rs
)

QueueTime(ClusterA)
RunTime(ClusterA)

QueueTime(ClusterB)
RunTime(ClusterB)

Fig. 11: Average JCT on Clus-
ters A (left) and B (right).

We create 6 variants of
each of the 5 CNN models
with different numbers of
epochs and resource bud-
gets to create a pool of
30 ML training jobs. We
then create a job trace using
Poisson distribution with an
average arrival rate of 1 job
per hour. The job trace contains 40 job arrivals and we
randomly pick one training job from the training job pool for
each arrival. We carefully design the job trace to avoid extreme
overloading of clusters, especially for the resource-constrained
Cluster A. We confirm this by analyzing the queued jobs over
time, which varies from no queuing to at most 6 queued jobs.
We repeat the same job trace on both Cluster A and B.

Figure 11 summarizes the average JCT on both clusters.
JCT in a multi-job environment consists of the job queuing
time and the actual job training time (referred to as run time).
In Cluster A, training jobs may need to wait for available
resources more often than Cluster B which is why all three
solutions show significant queuing time for individual jobs.
Similar to single job experiments, FA-BF shows the shortest
average job run time because it uses the whole budget from
the beginning and does not require any online resource alloca-
tions. However, this also results in large queuing time as the
individual jobs can only start when the entire resource budget

is available. Optimus and NEARCHUS, on the other hand, show
much shorter queuing time, 32.6% and 67.8%, compared to
FA-BF because the jobs can be launched with less available
resources. NEARCHUS achieves the best average JCTs among
the three: 23.6% and 35.6% less than FA-BF and Optimus.
This is accomplished by allowing for slow starts which results
in short queuing time and making efficient scaling decisions
with faster resource allocation ramp-up which provides better
job run time. In Cluster B, all three solutions experience very
short queuing time due to sufficient available resources. For
job run time, FA-BF again shows the shortest run time and
NEARCHUS outperforms Optimus by a 24.6% shorter run time.

C. Microbenchmarks
We investigate overheads related to NEARCHUS via mi-

crobenchmarks for the core configuration parameters.

20

40

60

Mo
bil
eN
et

De
ns
eN
et

Na
sN
etL
arg
e

Re
sN
et-
50

Inc
ep
tio
nV
3#

 o
f
re
s
ta
rt
s

NearchusClusterA
OptimusClusterA

NearchusClusterB
OptimusClusterB

Fig. 12: Job restart analysis.

Restart overhead. Both
NEARCHUS and Optimus
modify resource configu-
ration on the fly which
incurs training restarts on
a container platform. Fig-
ure 12 shows the number
of restarts of NEARCHUS
and Optimus on Cluster A and Cluster B. NEARCHUS on
average requires fewer restarts compared to Optimus in both
resource-constraint (Cluster A) and resource-abundant (Cluster
B) environments. Unlike Optimus in which the number of
restarts increases linearly with more training nodes added,
NEARCHUS reduces subsequent restarts because of its mul-
tiplicative scaling strategy and reactive adjustment to perfor-
mance bottlenecks, resulting in lower overall overhead.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 50 100 150 200 250 300S
p

e
e
d

 (
st

e
p

s/
s)

Time (min)

25% 50% 100%

(a) Training Speed (steps/s)

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

v
C

P
U

(s
)

id
le

Time (min)

25% 50% 100%

(b) Idle vCPU(s)
Fig. 13: Sensitivity analysis of multiplicative scaling.

Multiplicative scaling. NEARCHUS uses a multiplicative
scaling ratio, Rup, to control how fast the resource allocation
approaches the resource budget. An ideal scaling ratio should
keep a proper trade-off between short convergence time (i.e.,
how long it takes to find the best DT-config) and high CPU
efficiency. A larger scaling ratio allows faster convergence
to the resource budget, while a smaller scaling ratio enables
a more thorough searching process for the best DT-config
leading to high resource efficiency at the end. Figure 13a
shows the training speeds over time, for ResNet-50 training
jobs when using different scaling ratios and Figure 13b shows
the relative idle CPUs over time. The results show higher
training speeds on average for the larger scaling ratios but it
also ends up having more idle CPUs. In practice, the resource
requirement is a result of various performance bottlenecks in

the environment which cannot be known beforehand. There-
fore, we use 50% as the default scaling ratio.

VI. DISCUSSION AND CONCLUSION

Sub-optimal solutions. To achieve the best training per-
formance, jobs require an optimal resource configuration.
However, due to the vastness of the entire potential search
space, identifying a globally optimal solution is a formidable
challenge. NEARCHUS employs a heuristic-based approach to
execute a locally directed search that expedites the search
process. By permitting a degree of tolerance for suboptimal
solutions, NEARCHUS effectively mitigates search overhead
while preserving substantial performance improvements.
CPU vs. GPU. NEARCHUS focuses on CPU rather than GPU
resource allocation. However, GPUs have similar resource
efficiency problems that not all streaming multiprocessors
(SM) can be efficiently utilized by ML workload [51]. How-
ever, fine-grained GPU allocation on container platforms is
not available; we are unable to adjust GPU allocation to
containerized training nodes as fine-grained as CPUs. There
are recent efforts to enable such functionalities on container
platforms [52], [53], [54], but none of them is mature enough
or publicly available. However, NEARCHUS is applicable to
GPU clusters with proper implementation modifications if
fine-grained GPU management is available since it doesn’t re-
quire prior knowledge of training jobs or underlying resources.
NEARCHUS makes scaling decisions based on the performance
bottlenecks and compute resource efficiency which are inde-
pendent of the type of compute resource.
Parameter server vs. AllReduce. Different from parameter
server approach, worker nodes in other distribution strategies
and frameworks [55], [56] exchange model updates with each
other directly. While NEARCHUS may not apply directly in
such cases since the PS-worker architecture doesn’t exist, the
resource allocation of worker nodes including the number of
nodes and per node resource assignment still needs to be
fine-tuned for better training speed and resource efficiency.
The basic idea of real-time performance bottleneck detection
and dynamic resource adjustment of NEARCHUS can still be
leveraged. For example, in a cluster with heterogeneous GPUs,
the number of worker nodes and the resource allocation need
to be carefully decided to avoid stragglers that slow down the
training speed. This is particularly important when multiple
different parallelisms are used together [36].
Conclusion. In this work, we first provide a detailed mea-
surement study to understand the performance bottlenecks of
distributed ML jobs. Inspired by our findings, we propose
NEARCHUS to accelerate distributed ML training by making
adaptive resource allocation decisions. NEARCHUS automat-
ically detects performance bottlenecks when running ML
training jobs and re-allocates resources to achieve optimized
training speed. Our evaluation shows NEARCHUS can improve
ML training speed up to 71.4% and 129.1%. It further reduces
job completion time and queueing time by 35.6% and 67.8%
respectively, when compared to a state-of-the-art solution.

REFERENCES

[1] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2019, pp. 279–291.

[2] “Parameter server training with parameterserverstrategy,” https://www.
tensorflow.org/tutorials/distribute/parameter server training, 2022.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’14. USA: USENIX Association, 2014, p. 583–598.

[4] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo, “Elastic parameter
server load distribution in deep learning clusters,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, ser. SoCC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
507–521. [Online]. Available: https://doi.org/10.1145/3419111.3421307

[5] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of Large-Scale Multi-Tenant GPU clusters for DNN
training workloads,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA: USENIX Association, Jul. 2019, pp.
947–960. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/jeon

[6] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “{MLaaS} in the wild: Workload analysis and
scheduling in {Large-Scale} heterogeneous {GPU} clusters,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 945–960.

[7] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proceedings
of the Thirteenth EuroSys Conference, ser. EuroSys ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3190508.3190517

[8] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: Quality-driven
scheduling for distributed machine learning,” in Proceedings of the
2017 Symposium on Cloud Computing, ser. SoCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 390–404.
[Online]. Available: https://doi.org/10.1145/3127479.3127490

[9] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

[10] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: a system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp. 265–
283.

[12] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, GPipe: Efficient Training of
Giant Neural Networks Using Pipeline Parallelism. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[13] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[14] W.-Y. Lee, Y. Lee, J. S. Jeong, G.-I. Yu, J. Y. Kim, H. J. Park,
B. Jeon, W. Song, G. Kim, M. Weimer, B. Cho, and B.-G. Chun,
“Automating system configuration of distributed machine learning,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 2057–2067.

[15] J. Gu, M. Chowdhury, K. G. Shin, and A. Akella, “Elastic model
aggregation with parameter service,” arXiv preprint arXiv:2204.03211,
2022.

[16] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo, “Tiresias: A GPU cluster manager for
distributed deep learning,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 485–500. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/gu

[17] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang,

and L. Zhou, “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 595–610. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/xiao

[18] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “AntMan: Dynamic scaling on GPU clusters for deep
learning,” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, Nov. 2020,
pp. 533–548. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/xiao

[19] P. Yu and M. Chowdhury, “Fine-grained gpu sharing primitives for
deep learning applications,” in Proceedings of Machine Learning and
Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020,
pp. 98–111. [Online]. Available: https://proceedings.mlsys.org/paper/
2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf

[20] H. Zhao, Z. Han, Z. Yang, Q. Zhang, F. Yang, L. Zhou, M. Yang,
F. C. Lau, Y. Wang, Y. Xiong, and B. Wang, “Hived: sharing a gpu
cluster for deep learning with guarantees,” in Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’20.

[21] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “Gslice: Controlled
spatial sharing of gpus for a scalable inference platform,” in Proceedings
of the 11th ACM Symposium on Cloud Computing, ser. SoCC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
492–506. [Online]. Available: https://doi.org/10.1145/3419111.3421284

[22] C. Zhang, M. Yu, W. Wang, and F. Yan, “Enabling cost-effective,
slo-aware machine learning inference serving on public cloud,” IEEE
Transactions on Cloud Computing, vol. PP, pp. 1–1, 07 2020.

[23] S. Mittal, P. Rajput, and S. Subramoney, “A survey of deep learning on
cpus: Opportunities and co-optimizations,” IEEE Transactions on Neural
Networks and Learning Systems, vol. PP, 04 2021.

[24] G. Li, M. Müller, G. Qian, I. C. D. Perez, A. Abualshour, A. K. Thabet,
and B. Ghanem, “Deepgcns: Making gcns go as deep as cnns,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[25] G. Li, C. Xiong, A. Thabet, and B. Ghanem, “Deepergcn: All you need
to train deeper gcns,” 2020.

[26] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural
networks,” ser. KDD ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 338–348. [Online]. Available:
https://doi.org/10.1145/3394486.3403076

[27] B. Chen, T. Medini, J. Farwell, s. gobriel, C. Tai, and A. Shrivastava,
“Slide : In defense of smart algorithms over hardware acceleration for
large-scale deep learning systems,” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,
2020, pp. 291–306. [Online]. Available: https://proceedings.mlsys.org/
paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf

[28] Z. Gong, H. Ji, C. Fletcher, C. Hughes, and J. Torrellas, “Sparsetrain:
Leveraging dynamic sparsity in software for training dnns on general-
purpose simd processors,” 09 2020, pp. 279–292.

[29] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su,
J. Yang, and M. Smelyanskiy, “Deep learning training in facebook data
centers: Design of scale-up and scale-out systems,” 2020.

[30] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “Deepcpu: Serving
rnn-based deep learning models 10x faster,” in Proceedings of the
2018 USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’18. USA: USENIX Association, 2018, p. 951–965.

[31] H. Li, Z. Wang, X. Yue, W. Wang, H. Tomiyama, and L. Meng,
“An architecture-level analysis on deep learning models for low-impact
computations,” Artificial Intelligence Review, pp. 1–40, 06 2022.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[33] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

[34] “Tensorflow:tf.config.threading,” https://www.tensorflow.org/api docs/
python/tf/config/threading/set inter op parallelism threads, accessed:
2022-02-22.

[35] “Tensorflow:tf.config.threading,” https://www.tensorflow.org/api docs/
python/tf/config/threading/set intra op parallelism threads, accessed:
2022-02-22.

https://www.tensorflow.org/tutorials/distribute/parameter_server_training
https://www.tensorflow.org/tutorials/distribute/parameter_server_training
https://doi.org/10.1145/3419111.3421307
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3127479.3127490
https://www.usenix.org/conference/nsdi19/presentation/gu
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://doi.org/10.1145/3419111.3421284
https://doi.org/10.1145/3394486.3403076
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_inter_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_inter_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads

[36] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang, Y. Wang,
E. P. Xing, Y. Xu, D. Zhuo, J. E. Gonzalez, and I. Stoica, “Alpa:
Automating inter- and intra-operator parallelism for distributed deep
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2201.12023

[37] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing per-
formance prediction robustness by combining analytical modeling and
machine learning,” 01 2015.

[38] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K. Ku-
maran, “Benchmarking machine learning methods for performance
modeling of scientific applications,” in 2018 IEEE/ACM Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 2018, pp. 33–44.

[39] C. Witt, M. Bux, W. Gusew, and U. Leser, “Predictive performance
modeling for distributed computing using black-box monitoring and
machine learning,” 2018.

[40] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

[41] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” 2017.

[42] G. Huang et al., “Densely connected convolutional networks,” 2018.
[43] B. Zoph et al., “Learning transferable architectures for scalable image

recognition,” 2018.
[44] K. He et al., “Deep residual learning for image recognition,” 2015.
[45] C. Szegedy et al., “Rethinking the inception architecture for computer

vision,” 2015.
[46] A. K. Nain, “Cyclegan,” https://keras.io/examples/generative/cyclegan/,

2020.

[47] A. Khodadadi, “Traffic forecasting using graph neu-
ral networks and lstm,” https://keras.io/examples/time-
series/timeseries traffic forecasting/, 2021.

[48] J. Chan, “Gpt text generation from scratch with kerasnlp,”
https://keras.io/examples/gen-erative/text generation gpt/, 2022.

[49] K. Salama, “Image classification with vision transformer,”
https://keras.io/examples/vision/image classification with vis-
ion transformer/, 2021.

[50] fchollet, “Bidirectional lstm,” https://keras.io/examples/nlp/bi-
directional lstm imdb, 2020.

[51] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[52] “Nvidia multi-process service,” https://docs.nvidia.com/deploy/mps/
index.html, 2022.

[53] “Nvidia multi-instance gpu user guide,” https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/, 2022.

[54] J. Cho, D. Zad Tootaghaj, L. Cao, and P. Sharma, “Sla-driven ml
inference framework for clouds with heterogeneous accelerators,” Pro-
ceedings of Machine Learning and Systems, vol. 4, pp. 20–32, 2022.

[55] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[56] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 561–577.

https://arxiv.org/abs/2201.12023
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

	Introduction-5pt
	Related Work-5pt
	Measurement Study-5pt
	What determines training speed?-5pt
	What causes performance degradation?-5pt
	How to allocate the given resource budget?-5pt

	Nearchus Design-5pt
	Evaluation-5pt
	Single-job Training-5pt
	Multi-job Training-5pt
	Microbenchmarks-5pt

	Discussion and Conclusion-5pt
	References

