
Erika Hunhoff
erika.hunhoff@colorado.edu

Eric Rozner
eric.rozner@colorado.edu

University of Colorado Boulder

Network Connection Optimization for Serverless Workloads

Introduction
Serverless Background

 ● Application developers produce an event-driven
function to the cloud provider
 ● The cloud provider is responsible for invocation,
scaling, billing, failure, and management

Motivation
The use of short-lived, independent units of
computation can lead to avoidable inefficiencies:

 ● Traditional applications would maintain long-held
TCP connections
 ● Each newly instantiated serverless function must
create new sockets and perform TCP slow start
 ● Serverless functions block for writes, while
distributed services use asynchronous writes
 ● Caching and advanced reads can reduce time
spent on repetitive, predictable operations

We first develop an OS-level shim layer to provide
socket reuse between identical short-lived functions.

Architecture

 ● A serverless function running in container func1
opens a socket to an external database DBblue
 ● A shim layer intercepts socket system calls
 ● The pool returns pre-existing socket S1
 ● S1 is an unused warmed socket or a socket
created by a previous invocation

Preliminary Work - FCT

Figure 4 shows flow completion time (FCT) for a
new connection versus a warmed connection:

 ● Warmed implies a connected socket that has
already converged to an appropriate TCP
congestion window size
 ● Baseline FCT measures time from socket
creation to flow completion
 ● Warmed FCT measures time to send the data

Warmed connections finish faster because:
 ● No overhead from TCP handshakes
 ● Larger window sizes at start of transmission
 ● Less round-trips to send data

Small flows (≤ 1 MB) complete 2-24 ms faster (with
congestion) or 0.7-1.2 ms faster (no congestion).

Future Work

Create a pool manager with features including:
 ● Communication between the pool manager and
the function scheduler
 ● Intelligent connection pool garbage collection
 ● Network probing to approximate appropriate
congestion windows for warmed sockets

The long-term goal is to explore:
 ● TLS integration
 ● Asynchronous writes
 ● Caching of commonly accessed data
 ● Proactive retrieval of network content

Preliminary Work - Reuse

The effects of reuse are measured
using two nodes (Figure 2):

 ● A node with a client program
that runs twice (once to use the
socket, once to reuse)
 ● A node running a server program
representing an external resource

Figure 3 shows latency measured
from connection establishment
to completion for three client
configurations:

 ● Baseline: No shim layer is
installed, system is unmodified
(median: 446 µs)
 ● DummyShim: A shim layer
intercepts system calls, but does
not change socket behavior
(median: 459 µs)
 ● Reuse: A shim layer contains
minimal logic needed to perform
one instance of socket reuse
(median: 322 µs)

Experimental Setup
Two m510 nodes provisioned on CloudLab

 ● Eight-core Intel Xeon D-1548 at 2.0 GHz
 ● Dual-port Mellanox ConnectX-3 10 GB NICs
 ● Ubuntu 18.04.4 LTS
 ● Linux 5.3.0-28-generic

Shim Design
The shim is a loadable kernel
module (LKM) that intercepts
system calls by overwriting
function addresses in the system
call table (similar to the SlimSocket
component in Slim [NSDI ‘19]).

Figure 3: CDF of latencies from reuse test (2000 test runs)

Figure 2: Experiment architecture for reuse

Figure 1: Architecture overview

Figure 4: FCT results

