SDN traceroute: Tracing SDN Forwarding without
Changing Network Behavior

Kanak Agarwal
IBM Research
Austin, TX, USA
kba@us.ibm.com

Eric Rozner
IBM Research
Austin, TX, USA
erozner@us.ibm.com

%
Colin Dixon
Brocade
San Jose, CA, USA
colin@colindixon.com

John Carter
IBM Research
Austin, TX, USA
retrac@us.ibm.com

ABSTRACT

Software-defined networking provides flexibility in designing net-
works by allowing distributed network state to be managed by logi-
cally centralized control programs. However, this flexibility brings
added complexity, which requires new debugging tools that can
provide insights into network behavior. We propose a tool, SDN
traceroute, that can query the current path taken by any packet
through an SDN-enabled network. The path is traced by using the
actual forwarding mechanisms at each SDN-enabled device with-
out changing the forwarding rules being measured. This enables
administrators to discover the forwarding behavior for arbitrary
Ethernet packets, as well as debug problems in both switch and
controller logic. Our prototype implementation requires only a few
high-priority rules per device, runs on commodity hardware using
only the required features of the OpenFlow 1.0 specification, and
can generate traces in about one millisecond per hop.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management, network monitoring

Keywords

network management; network debugging; software-defined net-
working; datacenter; traceroute

1. INTRODUCTION

Software-defined networking (SDN) makes it easier to modify
the control plane of networks in software through open protocols.
While this can enable more efficient networks and support new fea-
tures, it also potentially makes the network a more complex sys-
tem. In an SDN environment, multiple SDN applications, services

*This work completed at IBM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620756.

or administrators can independently and dynamically control the
distributed forwarding state of the network by directly installing
rules in switches. Furthermore, SDN programs and controllers of-
ten translate high-level configurations into low-level rules. The re-
sult is that it can be difficult for network operators to predict the ex-
act low-level rules, and thus expected network behavior, that their
high-level configuration will trigger.

When troubleshooting a problem, SDN programmers and net-
work operators must grapple with many possibilities including bugs
in controller logic, switches, individual SDN applications, and their
composition. This makes it imperative to have tools that can pro-
vide visibility into how different packets are handled by the net-
work at any given time.

Perhaps the simplest tool that provides visibility into a network
is traceroute, which helps determine the network path to reach
a certain host. However, this tool is extremely limited in trou-
bleshooting SDN-enabled networks and determining forwarding
behavior based on fine-grained packet header matching. The main
limitation being that the t raceroute tool can only provide the
layer-3 (IP) path information because it relies on the time-to-live
(TTL) field in the IP header to trigger ICMP error messages from
intermediate routers. Furthermore, it assumes routing and forward-
ing are destination-based'. In this paper we present SDN tracer-
oute, an alternate tool for measuring paths in an SDN-enabled net-
work. In particular, it provides the path an arbitrary packet with
user-defined header fields would take if it were injected into the
network at a certain point. The path is reported as a list of ports
on switches, enabling it to operate across all SDN-enabled devices
regardless of network layer.

Of particular note is that SDN traceroute makes minimal as-
sumptions about the correctness of controllers and switches, but
instead measures the actual forwarding behavior of the network us-
ing a small number of high-priority rules to trap and re-inject the
packet at each hop. In contrast to previous approaches [9, 10], our
tool does not modify the existing rules in forwarding tables thus
providing a clean separation between the observing process and the
observed reality.

Rather than modify the rules in the measured switch, SDN tracer-
oute leverages the switches surrounding the measured switch to ob-
serve its behavior while still using the production rules. We accom-

'Newer versions of t raceroute relax the destination-based as-
sumption by allowing for the sending of TCP and UDP traffic as
well as setting the source and destination port numbers, but still do
not allow for tracing arbitrary packets or observing layer-2 hops.

plish this by coloring the switch graph to assign each switch a tag
which is different from its neighbors. All probes carry the same tag
as the switch they are trying to measure, while production traffic
carries a single network-wide default tag.

We then install rules such that switches forward any traffic marked
with a non-default tag other than their own to the controller. In
this way, by changing the tag at each hop, the controller can push
a probe through the network using the same rules it would have
followed if it were production traffic. Our current implementation
uses the VLAN priority bits to carry the tag, but nearly any other
header field would suffice as long as the field is not used for making
forwarding decisions in the network.

We argue that injecting and tracing a real packet through the net-
work enables a network operator to debug issues in the controller
and/or switches. We demonstrate this by showing a few real-world
bugs that were difficult to trace down and where SDN traceroute
would have helped.

The remainder of this paper is organized as follows. Section 2
reviews the existing approaches to determine forwarding behavior
in SDN-enabled networks. Section 3 and 4 present the design and
evaluation of SDN traceroute, respectively. Section 5 reviews the
current state-of-the-art. We discuss limitations and alternatives in
Section 6 before concluding in Section 7.

2. BACKGROUND

Broadly, approaches to determine forwarding behavior in SDN-
enabled networks fall into two categories. The first builds a model
of the forwarding behavior at each network element and then uses
this model to answer questions about the network as a whole. The
second either issues active probes or monitors production traffic to
observe ground truth forwarding behavior. SDN traceroute falls in
the latter category, but we discuss both approaches here. Section 5
provides a more complete description of related work.

2.1 Model-driven

Model-driven approaches are appealing because they work in
two steps, the first gathers enough network state to build a model
and the second uses that model to answer questions. This decom-
position removes the physical switches as a possible bottleneck in
the second step and allows for probes and queries to be done using
only the model without having to involve actual network hardware.

With a few exceptions [11, 13], network state is gathered ei-
ther by scraping rules from switches directly, e.g., via the CLI or
SNMP [17], or by assuming that the controller manages to main-
tain a correct view of the rules in the network at all times. Both
of these have practical limitations. Rule scraping often has high
latency as it can take seconds or more [5, 6] to read all of the rules
out of a given switch. Further, finding stable snapshots of rules can
be difficult [20].

Additionally, as others have noted [9, 10, 19], model-driven ap-
proaches cannot be used to debug errors in the data plane itself and
are often only able to debug errors in the controller to a limited
extent.

An alternative is to carefully track network state by observing
all programmed rules, predicting rule expirations and triggering
targeted rule scraping. While some work has pushed in this di-
rection [11, 13], we are not aware of any system that provides a
comprehensive take and we think a tool like SDN traceroute would
be an excellent complement to these approaches.

2.2 Active Probes and Monitoring

Sending active probes or monitoring production traffic allows for
measuring the ground truth behavior of the data plane. However,

doing so requires the network infrastructure to allow for traffic to
be trapped and/or logged as it traverses the network. Existing ap-
proaches to do this either change the existing rules [9, 10] to also
generate notifications or assume additional infrastructure to do this
logging [19].

Generally, these approaches pay for their fidelity by consuming
network resources and risk perturbing the network state. As dis-
cussed in the following sections, our SDN traceroute approach goes
to great length to minimize both limitations.

3. DESIGN

Similar to traceroute, SDN traceroute employs low-overhead
probe packets to measure network paths. It works in two phases.
In the first phase, it colors each switch (or vSwitch) in the network
using a graph coloring algorithm. Then, using the results of this
coloring, it installs a small number of high-priority rules in every
switch in the network which allow them to trap probe packets com-
ing from their neighbors.

In the second phase, SDN traceroute injects a probe packet into
the network to start tracing the route. The installed rules allow the
packet to progress one hop before being returned to the controller.
The controller then records the hop, slightly modifies the probe
packet, and re-injects it to proceed to the next hop.

The remainder of this section describes the concrete goals and
requirements of SDN traceroute, its interface, and both phases of
operation before discussing the assumptions it makes about other
SDN applications and the network.

3.1 Goal and Requirements

Our goal is to trace the path of a given packet using the actual
forwarding rules in the network, with as little impact on the net-
work as possible. This goal translates into the following key re-
quirements:

1. Non-invasive: The existing rules in forwarding tables should
remain unchanged. This ensures existing traffic will continue
to flow without any changes and that SDN traceroute will not
accidentally change the forwarding behaviors it is trying to
measure.

2. Accurate: The existing forwarding rules should be applied
directly to the probes as well as production traffic when mea-
suring the behavior of a switch. This ensures that SDN tracer-
oute is measuring the actual forwarding behavior.

3. Low resource consumption: SDN traceroute should require
only a small number of rules per switch and update those
rules infrequently to avoid using forwarding table space and
wasting other network resources.

4. Commodity hardware: The approach should work on cur-
rent commodity hardware using existing SDN protocols, e.g.,
OpenFlow [15]°.

5. Arbitrary traffic: It should be possible to trace the path of
any flow and even any given packet from within a flow.

It should be noted that simultaneously being non-invasive and
accurate is particularly difficult. Traditionally, to accurately trace
a probe, the existing forwarding rules used by the production traf-
fic are modified to log each hop, but this violates the non-invasive
requirement by changing the state we are trying to measure.

2SDN traceroute requires only OpenFlow 1.0, instead of newer
OpenFlow versions that are less commonly available.

3.2 Interface

SDN traceroute runs as an application on an SDN controller so
that it can push rules to the switches and listen to OpenFlow mes-
sages. Since SDN traceroute is running on the centralized con-
troller, we assume that it has access to the topology of the network.
SDN traceroute provides a simple API to measure the current for-
warding behavior: it accepts an arbitrary Ethernet frame with user-
specified packet header fields and an injection point in the form of
a switch identifier and port. After performing the trace route, the
program returns an ordered list of <switch_id, port> pairs corre-
sponding to each hop encountered by the packet as it traversed the
network. If a forwarding loop is encountered, the program returns
after the first repeated pair.

3.3 Network Configuration

Before sending any probes, SDN traceroute must install rules
that allow it to selectively trap probes. The rules must support two
different tasks: (i) matching the incoming probe packet so the hop
can be logged at the controller and (ii) not matching the controller-
returned probe as to forward the packet downstream. In this subsec-
tion, we outline what rules are installed into the switches in order
to achieve the first task. In the next subsection we show how those
rules perform the second task.

The SDN traceroute application begins by applying a graph col-
oring algorithm to the topology. The colors will serve as tags that
are an integral part of the rules required by SDN traceroute. The
coloring algorithm assigns each switch a color such that no two ad-
jacent switches (switches directly connected via a link) are assigned
the same color. It further attempts to minimize the total number of
colors required to color the graph. Since this is an NP-hard prob-
lem, we use a greedy algorithm to color the vertices.

SDN traceroute requires all traffic to carry a color so that switches
can decide whether or not to send a probe to the controller. Our
implementation uses the VLAN priority field (three bits) to carry
colors. If the topology is colored using three colors, we can as-
sign a VLAN priority tag of (001), (010), and (011) to the switches
colored with the first color, second color, and the third color, re-
spectively. Note that the default tag of (000) is reserved for the
production traffic and is not used during the tag assignment pro-
cess. In general, if SDN traceroute uses k-bit tags, the topology
must be (2% — 1)-colorable. Many current datacenter topologies
use a hierarchical tree structure consisting of core, aggregation and
ToR switches. These topologies (including fat-trees [3]) require
only 2-bit tags as trees are 2-colorable. Even when topologies are
not actually trees, if they are layered (e.g., core, aggregation and
ToR layers) they remain 2-colorable.

Our goal is to have switches log all packets except packets tagged
with the default tag (production traffic) and those tagged with their
own color. To meet this goal, SDN traceroute installs rules in each
switch to match the color of all adjacent switches. These rules are
assigned the highest priority (32,767 in OpenFlow) and, upon a
match, forward the packet to the controller. Note that a switch’s
table does not contain any rules matching on its own color. An
example topology with graph coloring and the corresponding rule
configuration for route tracing is shown in Figure 1. The next sub-
section describes how the controller sends the packet back to the
switch for further routing.

The number of rules installed in a switch depends on the number
of colors used by its adjacent switches. As discussed previously,
in most scenarios, this requires installing one or two TCAM rules
in each switch. Thus the associated network configuration and the
TCAM overhead of the rules pushed by the trace route application
are quite minimal.

match prio action
match prio action 001 32767 CONT
010 32767 CONT 011 32767 CONT
011 32767 CONT Tag: 010

Tag: 001

match prio action
010 32767 CONT
Tag: 001

Tag: 010

match prio action
001 32767 CONT

Tag: 001

Tag: 011

match prio action

match prio action | [010 32767 CONT
011 32767 CONT

match prio action

010 32767 CONT| |001 32767 CONT
011 32767 CONT| |010 32767 CONT

Figure 1: Example topology with graph coloring and corre-
sponding tag-based rules. The shown topology is 3-colorable
and a 3-bit header field is used for tag encoding. The figure also
shows the tag matching rules installed by the trace route mod-
ule in the switches. Here CONT refers to the send to controller
action. All other match fields (not shown) are wildcarded.

Finally, note that these rules can be installed when SDN tracer-
oute is first configured and need only be changed when the network
topology changes.

3.4 Conducting the Trace Route

Once the network is configured in the manner discussed above,
it is ready to accept Ethernet probe frames for route tracing. The
process is best explained via an example, shown in Figure 2.

SDN traceroute begins by identifying the injection point. This is
either identified in the API call or it is assumed to be the attachment
point of the source host, which is looked up by source MAC or IP
address. Once SDN traceroute has the injection switch identifier
and port, it looks up the color of the ingress switch and inserts the
color into the header tag bits of the probe frame.

SDN traceroute then sends the probe to the ingress switch as
a PACKET_OUT message with the input port set to the injection
point. The action for the PACKET_OUT is set to TABLE, indicat-
ing that the switch should treat the packet as though it had been
received on the input port (step 1).

On receiving the PACKET_OUT, the ingress switch processes the
packet in its flow table. Since the header tag bits in the packet are
set to the color of the switch itself, the packet does not encounter
a match on any of the high-priority rules SDN traceroute has in-
stalled. Consequently, the packet is forwarded to the next hop as
though it were a regular, default-tagged packet (step 2). This en-
sures that the actual forwarding rules in the switch are used to route
the packet even though it is a probe and not production traffic.

The packet arrives at the second switch while still carrying the
header tag bits set to the color of the first switch. Since each switch
is configured with high-priority rules that trap all packets matching
the neighboring switches’ colors, the packet at the second switch
results in a match and is sent to the controller as a PACKET_IN
(step 3). SDN traceroute receives the packet at the controller and
logs the switch-id and port information of the switch that forwarded
the packet to the controller as the next hop in the path.

Once SDN traceroute records the current hop, it modifies the re-
ceived probe frame by rewriting the reserved tag field to the bits
corresponding to the color of the current switch. It then sends
the modified probe back as a PACKET_OUT to the same switch
that had sent the PACKET_IN message. The input port in the
PACKET_OUT is set to the input port where the packet was re-
ceived at the switch. The action field is once again set to TABLE

Controller
packet-out packet-in 4
(in-port: 11 (in-port: 21| |packet-out
tag: 001 tag: 001) (in-port: 21
ion: tag: 010
action: TABLE) 3 antion: TABLE)
2)forward 5) forward
> =>
Tag: 001 Tag: 010
match prio action match prio action
010 32767 CONT 001 32767 CONT

Figure 2: Example showing PACKET_IN and PACKET_OUT ex-
changes between switches and the controller for route tracing.
If an incoming packet at a switch does not match the tag-based
matching rules configured by the trace route module, it is han-
dled according to the production rules (not shown) configured
by the other SDN modules.

(step 4). The switch receives the modified probe from the controller
and applies its flow-table action on the probe. Since the reserved
tag bits in the modified probe are set to the color of the switch, the
tag based rules do not match and the packet is forwarded along the
next hop as a regular frame (step 5).

This process (steps 3—5) repeats for each hop in the path. The
process terminates when a time-out occurs between consecutive
PACKET_IN events, indicating that the packet has left the network
or been consumed by a host, or when a given <switch-id, port> is
repeated in the route, indicating the presence of a loop.

Lastly, notice that in step 3 the trace route application only han-
dles probe PACKET_IN messages that do not match the color of
the switch sending the PACKET__IN. This allows PACKET_IN mes-
sages matching the input switch color to be forwarded to other
modules in the controller for processing. This allows for scenar-
i0s where regular packet processing at a switch may itself initiate a
PACKET_IN to the controller, such as in reactive rule installation.

3.5 Assumptions

The proposed trace route algorithm places a few restrictions on
what other SDN applications are permitted to do. SDN traceroute
assumes it can reserve k bits in packet headers exclusively for its
use. These bits must not be used when making forwarding deci-
sions in the network and must not be modified by any devices in the
network. Furthermore, the bits must correspond to header field(s)
that can be matched on using rules in the switches. In the case
of OpenFlow 1.0, this means that any of the 12 matchable header
fields can be used as long as they are not made available to the other
SDN applications or modified by other network devices, e.g., mid-
dleboxes. A second assumption is that SDN traceroute reserves the
highest priority rules. This is usually not an issue due to the large
number of priorities (32,768 in OpenFlow) available for configu-
ration and packet processing. Third, SDN traceroute assumes that
the switch topology is (2* — 1)-colorable.

Finally, we note that SDN traceroute explicitly does not assume
routes are stable during the time it conducts a trace. If routes do
change during a trace, it will return a route that a normal packet
might have taken as the routes were changing. As with normal traf-
fic, a trace might return a combination of the new and old routes if
they are not installed in a way that provides consistent updates [16].

4. EVALUATION

We evaluate SDN traceroute by conducting two cases studies
and microbenchmarks on our testbed consisting of five IBM Rack-
Switch G8264 OpenFlow-enabled switches connecting several com-
modity servers running Open vSwitch [2]. The case studies show
how SDN traceroute can be useful in tracking down real-world bugs
and undefined behavior in both controllers and switches.

We ran two microbenchmarks. The first repeatedly installed ran-
dom routes and verified that SDN traceroute correctly discovered
them. As the tool returned the correct path 100% of the time, we
omit any further discussion. The second shows the latency of con-
ducting traces on various network paths.

Our implementation of SDN traceroute is a module for the Flood-
light controller [7] providing a REST API allowing a network oper-
ator to perform a trace route for an arbitrary packet. Our prototype
consists of about 600 lines of code.

Undefined Switch Behavior: It is possible for a controller to not
be able to accurately infer what forwarding action a switch may
take. One clear example is when a bug in a switch could lead to
undefined or unexpected behavior. Another, easier to reproduce,
example is when a switch may contain conflicting rules, i.e., a set of
rules that happen to match the same packet. OpenFlow provides a
mechanism to install rule priorities to help resolve conflicting rules,
but the forwarding behavior of a switch can be undefined when two
conflicting rules have the same priority. As SDN networks may
be programmed by many different programs, it is not unlikely that
similar cases may occur.

We studied the behavior of our switches when conflicting rules
have the same priority. First, a rule Rp that matches on destination
D and outputs to port A was installed on a switch. Next, a rule
Rs that matches on source S and outputs on a different port B was
added. We then started a flow with source S and destination D and
observed the behavior on the switch. We used port mirroring (to see
the exact packets leaving A and B) and port counters to obtain the
ground truth and compared that to SDN traceroute’s output. Both
the ground truth and SDN traceroute showed that the route corre-
sponding to rule Rp, the first installed rule, was active. Next, we
rebooted the switch and observed its behavior. After the reboot, we
found that the route changed, and the route corresponding to rule
Rs became active. Again, SDN traceroute was able to accurately
infer the path.

This test highlights the benefit of using the actual forwarding
mechanisms on the switch to infer routes. While conflicting rules
in a switch’s flow table could be detected at the controller, this also
shows the ability to detect switch bugs that might manifest in ways
that do not appear in flow tables.

Bugs in the Controller: Techniques to infer routes by analyzing
state at the controller may be prone to errors or bugs in the con-
troller itself. For example, consider a simple situation such as a
port going down. The current stable version of the Floodlight con-
troller [7] (v0.90 as of this writing) contains a bug that may prevent
rules that forward to the downed port from being removed.® This
in turn can prevent new routes from being installed.

Floodlight does not proactively push changes to switches, but
instead relies on switches removing rules when the idle timeout
of the rule fires. Then the next packet will miss, resulting in a
PACKET_IN, which will cause the controller to either reprogram
the rule or insert a changed version.

In the case of a downed port, the SDN controller waits for the
PACKET_IN to notify it to reactively reroute traffic around the

The bug is now fixed in nightly builds, but remains in the stable
version.

10
8*
q)ll!
5E 5L
o5,
g2
® 4 -
c2
=3
2*
O | | | | |
1 2 3 4 5
Switch Hops

Figure 3: SDN traceroute latency to conduct a trace route, as a
function of the number of hops.

downed port. However, developers found that preexisting periodic
traffic that persists despite persistent loss, e.g., heartbeats, will con-
tinue to activate rules in the switches along the path to the downed
port [1]. This prevents the rules from timing out, which in effect
keeps the bad route active.

SDN traceroute can debug the problem by inferring the network
is still routing packets to the downed port. A network operator
could then identify the last hop of the path as the likely culprit, as
well as verify that new traffic is routed correctly after the routes are
updated.

This scenario is an example where even though the controller
contains correct state, e.g., an updated view of the topology with the
downed link and correct routes to avoid it, the network continues to
behave in a different, and incorrect manner. The only way to find
bugs where the data plane and control plane diverge is with a tool
that measures the data plane directly, like SDN traceroute.

SDN traceroute Latency: Figure 3 shows the latency of conduct-
ing a SDN traceroute over paths of varying length. A hop is defined
as a link between two switches. We created a variety of paths in our
network, ranging from one to five hops and measured the latency.
Our results show that SDN traceroute generally takes a little over 1
ms per hop, with the average per-hop latency taking 1.23 ms. Each
point shows the average of 30 runs with error bars showing standard
deviation.

S. RELATED WORK

Automatic Test Packet Generation (ATPG) [19] shares a similar
goal to SDN traceroute as it looks at verifying the correctness of
data plane forwarding by generating probe packets. However, it
focuses on network-wide behavior rather than finding a particular
path. It’s worth noting that ATPG assumes the existence of test
agents capable of injecting and capturing test probes. While they
mention that OpenFlow could be used to accomplish the same task,
they do not provide any implementation details.

NetSight [9, 10] provides a way to gather packet histories for
a subset of traffic by modifying the existing rules in the network
to send postcards for a subset of traffic that is being debugged.
SDN traceroute works in a similar way, but it uses probe packets
instead of monitoring the existing traffic. Our approach produces
postcard-equivalents without having to modify any of the rules that
handle production traffic. However, to accomplish this, it gives up
the ability to determine the exact rule that matched for a packet
and limits the number of probes in the network. Furthermore, Net-
Sight assumes that switches can do line-speed truncation and mark
packets with switch-specific information. SDN traceroute, on the
other hand, runs on commodity hardware and requires no special

support from switches other than the base OpenFlow 1.0 protocol
implementation.

Anteater [14] uses SNMP [17] to gather rules from the forward-
ing database of each network device including firewalls, routers and
switches. It then models each device as a boolean function describ-
ing what requirements must be met for a given device to forward a
packet from an input interface to an output interface. When com-
bined with a topology, this allows a SAT solver to validate certain
network wide properties including loop-freedom, reachability, and
consistency among replicated routers.

Header Space Analysis (HSA) [12] generalizes device forward-
ing behavior to a function that maps a packet header and input port
to a (possibly empty) set of of (packet header, output port) pairs.
With this model, HSA can check global network properties like
loop-freedom and reachability for nearly arbitrary devices regard-
less of the protocols being used. NetPlumber [11] extends this ap-
proach to be incremental, reducing the time to check after a given
rule change to about 1-10 minutes.

Veriflow [13] focuses on doing real-time invariant checking by
doing incremental re-evaluation whenever new forwarding state is
pushed into the network. It does this by capturing rules sent by the
NOX [8] OpenFlow controller and making a minimal number of
incremental changes by sorting traffic into forwarding equivalence
classes and only checking the classes that have changed.

Libra [20] focuses on taking stable snapshots of forwarding state
and computing correctness properties on it in very large networks,
e.g., up to 10,000 switches. While the work notes that updates
are bursty, these updates are in a traditional network rather than an
SDN-enabled one and it is not clear if the periods of quiescence
seen for 99.9% of the time would remain.

OFRewind [18] allows recording and playing back of SDN con-
trol plane traffic. Another line of work, including NICE [4], focuses
on model checking controller applications rather than measuring
the ground truth forwarding behavior.

6. DISCUSSION

In this section, we highlight some discussion points surrounding
SDN traceroute. In particular, we contrast our probing based so-
lution against rule scraping for inferring routes. We also discuss
some practical implementation details and potential limitations of
the work.

Scraping Switch State: An alternative to using SDN traceroute
would be to continuously scrape rules from switches to build a
complete understanding of the network’s forwarding behavior and
then issue logical probes against this state.

We believe using the actual switches and their forwarding tables
is beneficial for many reasons. First, the default setting in some
controllers, such as Floodlight, installs routes in the network reac-
tively. Switches today have limited TCAM space which prevents
upfront static installation of all forwarding rules on the switch. In
this scenario, rules are actively swapped in and out of the local
cache dynamically. In this reactive mode of operation, packets that
do not match any rules in the switch’s forwarding table are sent to
the controller and only then does the controller insert forwarding
rules for the packet into the switch. Therefore, an approach that
simply scrapes the rules on the switch could not determine the path
based on a snapshot of the existing rules in the switches.

Second, as mentioned in Section 2, constantly scraping a large
number of rules from a large number of switches can be burden-
some. SDN traceroute can determine the routes of packets in a
lightweight manner by only communicating with the switches in
the path.

| Controller |
packet-out @ packet-out @ / RaCKEt-fr; 1
(in-port: 11 (tag: 010 (tln-p%r(tJ.1
tag: 001 action: out-port:12) ag: 001)

action: TABLE) / @
v @ @fom/ard
—— vSwitch —m— 3
ET R p— 7 22
@forward

Tag: 001 Tag: 010
match prio action match prio action
010 32767 CONT 001 32767 CONT

Figure 4: Example showing the trace route process when the
hardware switches do not support the TABLE command. The
process starts at vSwitch with each subsequent switch applying
its forwarding rules on the controller injected packets received
from its previous hop.

Third, a bug in the switch may cause inappropriate forwarding
behavior or packet drops, which would not be discoverable through
analyzing scraped rules.

TABLE Action Support: We noticed that some switches do not
support the TABLE action, even though it is specified as required in
OpenFlow 1.0. SDN traceroute can work with OpenFlow switches
that do not support the TABLE command by running Open vSwitch,
which supports the TABLE command, on the servers in the net-
work. Alternately, a simple host agent for injecting probes could
be used. SDN traceroute begins the trace route by sending the first
PACKET_OUT to the Open vSwitch instance running on the flow
source’s server. Since Open vSwitch supports the TABLE com-
mand, SDN traceroute performs as expected with the virtual switch
forwarding the packet to the next hop and the subsequent switch A
sending the packet to the controller as a PACKET_IN with its input
port information.

Instead of returning the packet labeled with A’s color back to
A with the TABLE action set, SDN traceroute uses the topology
information to deduce the output port of the previous switch and
sends the packet to the previous switch with the PACKET_OUT’s
action set to output the packet on the port towards A. Now when
the packet arrives at A, its normal flow table actions are applied
thus emulating the TABLE action. This process continues through
the network using three switches at a time to discover each hop
rather than two. This only requires that the first switch in a path
support the TABLE action.

Figure 4 shows the different steps involved in the process. The
key difference is in steps 4 and 5, where instead of the sending
the packet back to the switch itself with the TABLE action, the con-
troller sends the packet to the previous hop switch as PACKET_OUT
with its action set to output the packet on the port towards the in-
tended switch.

Limiting SDN traceroute packets Ideally, SDN traceroute’s probe
packets would never arrive at a device that wouldn’t trap them and

send them to the controller. However, because SDN traceroute can

only detect the end of path with a timeout, the last probe packet is

likely to reach a host or leave the network. This can be prevented

by installing rules in end-host firewalls and a firewall at the edge of

the network to prevent packets from leaving the network.

Dealing with Middleboxes: While SDN traceroute cannot tell
what middleboxes a given packet will traverse, it can tell what the
complete path of a packet is even if it happens to traverse middle-
boxes as long as middleboxes do not modify the tag field. Model-
based approaches using controller state or switch rules cannot de-
termine how packets may interact with middleboxes unless middle-
boxes are explicitly included in the model.

7. CONCLUSION

In this paper, we present SDN traceroute, a tool for tracing the
path of a network flow in SDN-enabled networks. By using the
rules within the switches themselves, SDN traceroute is able to
debug arbitrary flows and packets with no special support needed
from switches in the network beyond basic OpenFlow 1.0. The key
feature of the tool is that it can apply the same forwarding rules
to the probes as those used by the production traffic without re-
quiring any changes to the actual forwarding rules. Furthermore,
SDN traceroute requires upfront installation of only a small num-
ber of rules per switch resulting in a very low resource overhead.
We envision SDN traceroute as an integral part of any SDN admin-
istrator’s toolkit for managing and troubleshooting the network.

References

[1] Floodlight-developers mailing list.
https://groups.google.com/a/openflowhub.org/d/topic/
floodlight-dev/HpB-TpASXmM/discussion.

[2] Open vSwitch. http://www.http://openvswitch.org.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In SIGCOMM, 2008.

[4] M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford. A NICE way to
test OpenFlow applications. In NSDI, 2012.

[5] A.R.Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. DevoFlow: Scaling flow management for high-performance
networks. In SIGCOMM, 2011.

[6] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,

Y. Fainman, G. Papen, and A. Vahdat. Helios: A hybrid electrical/optical switch

architecture for modular data centers. In SIGCOMM, 2010.

Floodlight openflow controller.

http://floodlight.openflowhub.org/.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: Towards an operating system for networks. In CCR, 2008.
[9] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown. Where
is the debugger for my software-defined network? In HotSDN, 2012.

[10] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown. I know
what your packet did last hop: Using packet histories to troubleshoot networks.
In NSDI, 2014.

[11] P. Kazemian, M. Chang, , H. Zeng, G. Varghese, N. McKeown, and S. Whyte.
Real time network policy checking using header space analysis. In NSDI, 2013.

[12] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In NSDI, 2012.

[13] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In NSDI, 2013.

[14] H.Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King.
Debugging the data plane with anteater. In SIGCOMM, 2011.

[15] OpenFlow-switch. https:
//www.opennetworking.org/standards/openflow-switch.

[16] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for network update. In SIGCOMM, 2012.

[17] Version 2 of the protocol operations for the simple network management
protocol (SNMP). RFC 3416.
http://www.ietf.org/rfc/rfc3416.txt.

[18] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind:
Enabling record and replay troubleshooting for networks. In USENIX ATC,
2011.

[19] H.Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test packet
generation. In CoNEXT, 2012.

[20] H.Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and
A. Vahdat. Libra: Divide and conquer to verify forwarding tables in huge
networks. In NSDI, 2014.

[7

https://groups.google.com/a/openflowhub.org/d/topic/floodlight-dev/HpB-TpASXmM/discussion
https://groups.google.com/a/openflowhub.org/d/topic/floodlight-dev/HpB-TpASXmM/discussion
http://www.http://openvswitch.org
http://floodlight.openflowhub.org/
https://www.opennetworking.org/standards/openflow-switch
https://www.opennetworking.org/standards/openflow-switch
http://www.ietf.org/rfc/rfc3416.txt

	Introduction
	Background
	Model-driven
	Active Probes and Monitoring

	Design
	Goal and Requirements
	Interface
	Network Configuration
	Conducting the Trace Route
	Assumptions

	Evaluation
	Related Work
	Discussion
	Conclusion

