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ABSTRACT

While SDN promises fine-grained, dynamic control of the network,
in practice limited switch TCAM rule space restricts most forward-
ing to be coarse-grained. As an alternative, we demonstrate that
using destination MAC addresses as opaque forwarding labels al-
lows an SDN controller to leverage large MAC (L2) forwarding
tables to manage a plethora of fine-grained paths. In this shadow
MAC model, the SDN controller can install MAC rewrite rules at
the network edge to guide traffic on to intelligently selected paths
to balance traffic, avoid failed links, or route flows through mid-
dleboxes. Further, by decoupling the network edge from the core,
we address many other problems with SDN, including consistent
network updates, fast rerouting, and multipathing with end-to-end
control.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords

routing; ethernet; label-switching; consistent updates; software-
defined networking; datacenter

1. INTRODUCTION

Software-defined networking (SDN) promises fine-grained con-
trol of the network both spatially and temporally. For example,
OpenFlow [29] enables forwarding decisions to be made based on
nearly any packet header field, in contrast to traditional coarse-
grained destination-based forwarding. Further, forwarding rules
can be updated hundreds of times per second [34] based on network-
wide measurements gathered in milliseconds [31]. SDN applica-
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tions leverage these features to implement near-optimal traffic en-
gineering [8, 14], load balancers [39], and DDoS mitigation [41].

Unfortunately, current hardware limitations make straightforward
implementation of fine-grained spatial control problematic. Cur-
rent switches have only a few thousand flexible rules [37], making
it hard to provide even host-pair granularity for forwarding, so for-
warding is typically based on aggregates [16, 26]. Prior work to
leverage large L2 forwarding tables [37] avoids routing on aggre-
gates, but limits forwarding to be destination-MAC-based.

Further, while individual rules can be installed hundreds of times
per second, frequent path updates can have unintended consequences
[23, 32]. While rules are being updated from one configuration to
another, the network may pass through intermediary states that vi-
olate policy, cause congestion, form loops, or drop traffic.

We believe these limitations have contributed significantly to the
fact that most real-world SDN deployments are based on over-
lays [22]. Hardware SDN deployments are typically small proofs
of concept. Issues around consistent updates and rule space ex-
haustion tend to only arise at scale, so small proof of concept de-
ployments do not observe or address these issues.

In this paper, we note label switching solves both problems. En-
coding fine-grained paths as labels allows (almost) all forward-
ing decisions to be made using fixed-width, exact-match lookups,
which map easily into large simple hardware tables without requir-
ing large expensive TCAM tables. Further, since these paths use
opaque labels, they can be installed in the network before any traf-
fic is directed to them, which ensures per-packet consistency [32]

A recent position paper by Casado et al. [11] suggests that next-
generation networks should combine an intelligent network edge
with a label-switched core. Casado et al. arrive at this conclusion
based on separating the concerns of end points, switches, and op-
erators. We arrive at the same conclusion based a different line of
reasoning, which lends credence to the notion that SDN-enabled
networks should be architected in this fashion.

Label switching can be done using MPLS [33], but MPLS sup-
port in commodity switches is limited. For example, the IBM Rack-
Switch G8264 only recently added MPLS support [4] and only
supports 1000 MPLS push and 1000 MPLS pop rules, which we
believe represents the capabilities of the underlying Broadcom Tri-
dent [10] switching ASIC as well as similar ASICs from other ven-
dors. Thus, using MPLS to manage the core of a large network re-
quires buying high-end switches, waiting for future switches with
large MPLS tables, or both.

In this paper, we explore an alternative scalable label-switching
architecture that can be implemented on existing commodity hard-



ware by using virtual MAC addresses, which we call shadow MACs,
as forwarding labels. Unlike traditional (physical) MAC addresses,
shadow MACs are not associated with a particular physical end-
point in the network. Rather, they are opaque values akin to MPLS
labels. Shadow MAC forwarding rules can be installed in the L2
forwarding tables, which are typically the largest tables available
with 100,000+ entries (see Table 1). We then steer traffic on to
these label-switched paths using either flexible rules at the edge (in
TCAMs or vSwitches) or ARP spoofing.
In this paper, we make the following contributions:

e We demonstrate how to implement label switching with shadow

MAC addresses as forwarding labels, which exploits large L2
forwarding tables available in commodity Ethernet hardware.

e We demonstrate that label switching solves many current SDN
problems by enabling consistent network updates, scalable
fine-grained forwarding, fast rerouting, and multipathing with
end-to-end control.

We have implemented shadow-MAC-based switching using both
OpenFlow and expect scripts that program our switches’ CLI.
The latter requires no OpenFlow support, which demonstrates that
our shadow MAC mechanism can be deployed on legacy hardware.

The remainder of this paper is organized as follows. Section 2
presents the design and implementation of shadow-MAC-based la-
bel switching. Section 3 describes the benefits this approach offers.
Section 4 evaluates our implementation. We compare our approach
to related work in Section 5. Finally, we discuss other possible uses
for shadow MAC:s in Section 6 and conclude in Section 7.

2. DESIGN

We propose a label-based forwarding mechanism that uses vir-
tual Ethernet MAC addresses (shadow MACs) as forwarding labels.
The shadow MAC mechanism can be implemented efficiently in
current networks (SDN or even legacy). Shadow MACs introduce
a layer of indirection in the data plane by decoupling the network
core (which uses labels to forward packets) from the edge switches
(which uses labels to steer packets in/out of label-switched paths).
This section discusses different design components we use to im-
plement shadow-MAC-based forwarding in commodity-switched
Ethernet environments.

2.1 Control Plane

The control plane of our label-based forwarding mechanism is
implemented via extensions to a centralized SDN controller. We
modify the controller to export an install route API to install a
shadow-MAC-based label-routed path to a destination. The con-
troller then programs core and egress switches with the appropriate
forwarding rules. We can activate the installed route immediately
by configuring the ingress switches. Alternatively, invoking appli-
cations can pre-install multiple paths to a host and activate them
later for a particular flow. This is achieved by assigning a unique
identifier to each of the installed routes. SDN applications can ac-
tivate one of the pre-installed routes for a flow by making an API
call to the select route interface and specifying the source and flow
identifier along with the route identifier for ingress switch match.

In practice, this model should require few changes to existing
SDN applications since most already use path-oriented interfaces,
e.g., Floodlight’s pushRoute () function [15], to install rules,
rather than pushing individual rules directly to switches.

2.2 Core Forwarding

The key idea in our proposal is to treat each packet’s destination
MAC address field as an opaque forwarding label. The SDN con-

troller allocates a unique shadow MAC address for each path' in
the network. It then installs rules that match on the shadow MAC
address in the L2 forwarding table of each switch along the path.
Switches in the network core are unaware that shadow MAC ad-
dresses do not correspond to physical endpoint MAC addresses,
and simply forward packets based the installed MAC forwarding
rules. This design allows switches to use their large L.2-destination-
based forwarding tables to implement the data plane of a label-
based forwarding scheme in an scalable manner.

2.3 Edge Forwarding

Once the core is configured to forward packets based on shadow
MAC:s, all that remains is to steer traffic in and out of MAC-label-
switched paths at the source and destination edges, respectively.
The source needs to select the appropriate shadow MAC based on
flow information and (re)write it in each packet’s destination MAC
field. The destination needs to rewrite the destination MAC address
from the shadow MAC to the destination’s real MAC address. We
have implemented two schemes to accomplish these goals, MAC
address rewriting and ARP spoofing.

MAC Address Rewriting: The MAC address rewriting scheme
leverages the fact that OpenFlow-compatible switches can rewrite
addresses in the data plane at line rate. To steer a packet to a par-
ticular path, we install a rule in the ingress switch that matches
flow-specific fields and rewrites the destination MAC address to the
shadow MAC address for the desired path. At the egress switch, we
install a rule that rewrites the destination MAC to the destination
host’s real MAC address. If end hosts are virtualized, the rewrite
rules are installed in the corresponding hypervisor vSwitches. Oth-
erwise they are installed in the physical ingress and egress switches
using one TCAM rule per active shadow MAC.

The MAC rewriting scheme is very flexible—it can assign a dis-
tinct shadow MAC label to any fine-grained flow on which Open-
Flow can match. Of note, this scheme allows distinct shadow MACs,
and thus distinct paths through the network, to be assigned to differ-
ent flows between the same source-destination host pair. Figure 1
illustrates a scenario where we use shadow MACs to configure two
different routes between a source (A) and destination (B). The first
route uses shadow MAC B1 to carry traffic destined to TCP port
80; the second route uses shadow MAC B2 to carry the remainder
of traffic between A and B. When ingress rules overlap, as in this
case, we assign higher priority to the rule that matches on more
header fields.

ARP Spoofing: ARP spoofing uses the ARP protocol to steer traf-
fic between a given source-destination host pair along a particular
path. In this scheme, the SDN controller acts as an ARP proxy and
handles all ARP requests from hosts’. When a path is activated
between source and destination, the SDN controller sends a gra-
tuitous ARP response to the source identifying the shadow MAC
as the MAC address corresponding to the destination. The source
host will insert the shadow MAC address in all packets intended
for the destination. We then configure the destination host to ac-
cept packets addressed to the corresponding shadow MAC address
either by doing rewrites (see above) or by putting the destination
NIC in promiscuous mode and modifying the Linux kernel to re-
move MAC filtering.

!'As described below, a path can be a linear path or a destination-
rooted tree, and any given path may be used by one or more flows
between source(s) and destination.

2Many existing SDN controllers already centralize ARP [15, 28] to
provide enhanced scalability, security, and control.
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Figure 1: Address rewrite example. Two shadow MACs (B1
and B2) are assigned to the destination VM with actual MAC
address B to steer different flows from a host to different label-
switched paths.
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Figure 2: ARP spoofing example. Two shadow MACs (BI and
B2) are assigned to the destination VM with actual MAC ad-
dress B to steer traffic from different sources to different label-
switched paths.

Figure 2 shows an example of the ARP spoofing scheme used to
configure label-switched routes from two different source hosts to
the same destination. The system assigns a different shadow MAC
address to the same destination for the two routes. It then sends
the gratuitous ARPs to the source hosts such that the two source
hosts see a different shadow MAC value as the MAC address for
the destination. Each host uses its shadow MAC address as the
destination address.

A benefit of ARP spoofing is that it can be implemented without
consuming TCAM rule space in the ingress or egress switches. A
limitation of this technique is that it can only assign shadow MACs
to flows at (source IP, destination IP) granularity.

3. KEY BENEFITS

Label switching using shadow MACs has several important ben-
efits for SDN-enabled networks, including:

Minimal TCAM Usage: One benefit of our proposal is that it
requires little or no scarce TCAM resources to implement fine-
grained (e.g., per-flow) forwarding. Table 1, taken from [37], shows
the number of TCAM and L2 entries supported by four different

Broadcom HP Intel Mellanox
Table Trident ProVision | FM6000 | SwitchX
TCAM | ~2K+2K 1500 24K 0?
L2/Eth ~T00K ~64K 64K 48K
ECMP ~IK unknown 0 unknown

Table 1: 10 Gbps Ethernet Switch Table Sizes (# entries). Table
reproduced from [37].

switches. The Broadcom Trident switch ASIC, used in many com-
mercial 10 Gbps switches, contains ~25x more L2 table entries than
TCAM entries. In practice, the ratio is 124x (123,904 vs. 1000) for
the IBM RackSwitch G8264 [4]. This makes clear the importance
of using L2 rules rather than TCAM rules when designing a net-
work architecture intended to support fine-grained routing at scale.

As described in Section 2, we use no TCAM rules in the net-
work core for forwarding and at most one TCAM entry per edge
switch per active shadow MAC sourced or drained by a directly-
connected host. In virtualized environments, MAC rewriting can
be performed in the hypervisor vSwitches, reducing the physical
switch TCAM requirement to zero. With ARP spoofing, no TCAM
entries are used at the edge, except possibly at the egress if host
stacks are unmodified. By minimizing the use of TCAM rules, our
shadow MAC mechanism enables us to build large-scale fabrics
with fine-grained routing, as well as leaving the TCAM free to be
used for its intended purpose, e.g., ACL-based policy enforcement.

Consistent Updates: Shadow MACs can easily support per-packet
consistency [32] during network updates. When the route for an on-
going flow needs to be updated, the SDN controller assigns the flow
a fresh shadow MAC and installs new rules in the core and egress
switches along the new path, all while ongoing traffic continues to
be forwarded along the original path. When the new path is fully
installed, the SDN controller updates the route atomically either by
installing a new rewrite rule in the ingress switch or by sending a
new gratuitous ARP. This design allows a single atomic operation
to switch between old and new paths, either installing a new rewrite
rule or using ARP to update the source’s IP-to-MAC table. In-flight
packets continue to use the old rules along the original path, while
new packets use the new path and rules. Once the SDN controller
is confident that all packets using the old path have drained from
the network, it can tear down the old path.

End-to-End Multipathing: Many data-center topologies, e.g.,
fat-trees [7] and Jellyfish [35], provide multiple distinct paths be-
tween host pairs. On such topologies, it is straightforward to im-
plement flow-based multipathing using shadow MACs. First, the
SDN controller allocates multiple distinct shadow MACs and as-
sociated paths through the network for each host pair. Then, each
ingress switch assigns each flow to one of the shadow MACs as-
sociated with the flow’s destination. All packets in a given flow
use the same shadow MAC and thus the same path to preserve
packet ordering. In the extreme, each flow could be assigned its
own shadow MAC. However, since there often are only a modest
number of viable paths between hosts and because even the num-
ber of L2 table entries is finite, we typically install a modest num-
ber of paths between host pairs and then associate each flow with
one of these paths. This scheme can be implemented efficiently in
hypervisor-based virtual switches, e.g., Open vSwitch [27]. When
a new flow is initiated, the vSwitch controller assigns one of the
available shadow MACs to the flow. The vSwitch controller can
use random, round-robin, hashing [17], or perhaps even load-aware
schemes to decide which path to assign to the flow.

Though conceptually similar to ECMP [38], shadow-MAC-based
multipathing provides end-to-end L2 multipathing on commodity
hardware, as compared to ECMP’s per-hop L3 multipathing. Fur-
ther, our scheme provides more control than traditional ECMP. In
ECMP, forwarding decisions are made per-hop, usually based on
hashing header fields, which can result in a poor flow distribu-
tion since decisions do not exploit global information. In contrast,
shadow MACs allow complete end-to-end paths to be selected.
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Misrouted Packets
Figure 4: A CDF of the number of incorrectly routed pack-
ets when rerouting with the Static Flow Pusher in Floodlight.
Our shadow MAC rerouting scheme encounters zero incor-
rectly routed packets.

Fast Switch-over: Fast switch-over to alternate routes is impor-
tant for reacting to failures or rerouting flows around congestion.
Our API allows SDN applications to pre-install multiple paths for
a given flow, each of which uses a distinct shadow MAC address.
After installation, only one is activated (by installing the appropri-
ate ingress rewrite rule or performing the gratuitous ARP), while
the remainder lie dormant until needed. Applications can initiate
fast switch-over to preinstalled backup paths via another API call to
activate a particular backup path. To activate a new path, the SDN
controller need only replace the rewrite rule in the ingress switch
or perform a gratuitous ARP, as appropriate, to cause subsequent
traffic to use the new path.

4. EVALUATION

In this section, we present two experiments that illustrate the
value of shadow-MAC-based forwarding. We first demonstrate the
importance of consistent route updates and then compare how fast
one can perform network rerouting using shadow MACs compared
to traditional solutions.

Our testbed consists of four IBM RackSwitch G8264 switches
running OpenFlow v1.0. We implement our shadow MAC frame-
work in a Floodlight [15] controller module that exports a REST
API to install and select routes. Our implementation consists of
about 2000 lines of code.

4.1 Consistent Route Updates

To demonstrate the importance of consistent route updates, we
tested how frequently packets are routed incorrectly on even a sim-
ple topology when routes are changed mid-flow. Figure 3 shows
the topology and routes we evaluated.

In this experiment, a source host sends UDP packets at maximum
rate via one of two routes to a destination host outfitted with one
NIC per route. At the start of the experiment, the packets follow
Route 1, but midway through the experiment the forwarding path is
changed to use Route 2. We place destination NICs in promiscuous
mode and measure the number of packets they receive.
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Figure 5: A CDF of the time to install a flow mod using Open-
Flow barrier messages.

50% =t 90% —O— 99% —¥H—

Latency (ms)

Switches

Figure 6: 50, 90", and 99'" percentile latency (ms) to it-
eratively install rules on a linear chain of switches, as simu-
lated over 1000 runs. The latency of Shadow MAC rerouting is
equivalent to that of one switch.

We compare two mechanisms to change routes. Shadow MAC
rerouting preinstalls rules for both routes in the non-ingress switches
(sw2, sw3, sw4) and changes routes by sending a single flow mod
to the ingress switch (swl) to change the shadow MAC rewrite
rule. Traditional OpenFlow rerouting uses Floodlight’s Static Flow
Pusher (SFP) module to install the new route by sending individ-
ual flow mods to each switch. In an attempt to minimize instabil-
ity, SFP performs flow mod operations in reverse topological order
(sw4, sw2, swl). However, SFP does not implement OpenFlow
barrier messages, so it is possible for rules to become active in an
inconsistent order due to differences in the time it takes each switch
to process the flow mod or other random events.

We consider a packet to be incorrectly routed if it traverses part
of more than one route, e.g., a packet that traverses sw2 (Route 2)
but is delivered to if1 (Route 1). We measure the number of incor-
rectly routed packets by comparing packet counters on the middle
switches (sw2 and sw3) to the number of packets received at the
corresponding destination interface (if2 and if1, respectively). If
| f| is the number of packets received by network element f, then
in the absence of loss the number of incorrectly routed packets is:
abs(|if2| — |sw2|) = abs(|if1] — |sw3]).

Figure 4 plots a CDF of the number of incorrectly routed packets
per run using SFP over 700 runs. At least one packet is misrouted
in every run. Typically thousands of packets are misrouted because
any packet queued in the network at the time of the route change
will use the new route as soon as it reaches a switch with a new rule
installed. In a production environment, this may cause packets to
bypass a security filter or other check. In contrast, shadow MAC
rerouting never misrouted a packet, because packets using Route
1 continue to use the path associated with the (original) shadow
MAC. Also, shadow MAC rerouting never caused a packet to be
lost, whereas SFP-based rerouting caused packet loss in ~5% of
runs due to the rule for Route 2 becoming active at sw1l before it
does at sw2.



4.2 Rerouting Latency

As described above, using shadow MACs allows preinstalled
routes to be activated using only one flow mod. To illustrate the
impact of this benefit, we measure the latency to install a flow mod
in our testbed. We install flow mods using OpenFlow barrier mes-
sages and measure the latency between the barrier_request
and barrier_reply at the controller. As seen in Figure 5, me-
dian latency is 3.95 ms and worst-case latency is 65 ms.

Mechanisms that install multiple flow mods sequentially will in-
cur this latency for each hop. Mechanisms that perform path up-
dates in parallel experience the worst latency of any individual flow
mod. In contrast, Shadow MAC rerouting only requires a single
flow mod. To illustrate the distinction, we simulate the latency to
iteratively install flow mods along a linear path using barrier mes-
sages. In this experiment we vary path length and use the distribu-
tion from Figure 5 to simulate 1000 runs for each path length. Fig-
ure 6 presents the resulting 50, 90", and 99" percentile latency.
In contrast, the latency of shadow MAC rerouting is independent
of the path length and equivalent to the latency of changing one
switch. For 5-hop paths, shadow MAC rerouting is between 20-40
ms faster than an iterative scheme.

S. RELATED WORK

There is a significant body of work in label switching and multi-
pathing. Moreover, in the SDN space, there have been many recent
efforts to address the consistent update and switch TCAM opti-
mization problem. In this section, we discuss some of this work.

Label-switching: Label switching is not new. MPLS [33] is the
newest and most widely used form of label switching, but ATM [2],
Frame Relay [3], X.25 [6], and Cisco’s proprietary tag switch-
ing [5] employ similar concepts.

Casado et al. advocate label switching, and in particular MPLS,
as the basis for an SDN network architecture in which an intelligent
edge routes traffic in and out of a label-switched core [11]. We
advocate the same architecture, but for different reasons. Casado
et al. are motivated by simplicity and the ability to establish sep-
arate, clean host-network, operator-network, and packet-switch in-
terfaces. We argue that label switching enables scalable, fine-grained
forwarding and consistent network updates.

Mulipathing: Multipathing is common in modern networks, but
current multipathing mechanisms like ECMP [38] and link aggre-
gation [1, 25] make per-hop decisions. In contrast, shadow-MAC-
based multipathing allows the network edge to select among end-
to-end paths for each flow, even between the same two hosts. Se-
lecting complete paths allows better optimization than local per-
hop decisions.

Consistent Updates: There is a growing body of work on per-
forming consistent updates in SDN networks [23, 32]. Our con-
tribution is not a new model for consistent updates, but rather the
demonstration that shadow-MAC-based label switching can pro-
vide per-packet consistency quite easily.

TCAM rule optimization: A large amount of work has gone into
optimizing TCAM usage in SDN-enabled switches.

CacheFlow [21] proposes using the TCAM only as a cache for
the most frequently used rules, while storing the full set of each
switch’s rules in software. DIFANE [40] partitions fine-grained
rules among a number of switches and directs misses (via the data
plane) to the switch that has the appropriate rule. Other work [20]
focuses on calculating an optimal set of rules that respect a combi-
nation of end-point policy, routing policy, and switch rule capacity.

Inspired by PAST [37], our shadow MAC-based forwarding scheme
employs non-TCAM rules in the core and a minimal number of
TCAM entries in the edge, preferably installed in a vSwitch. Un-
like PAST, shadow MACs support flow-granularity routing.

Finally, Metamorphosis [9] presents a design for an SDN-optimized
switching ASIC. Like Intel’s FM6000 [30], its design goal is to pro-
vide flexible parsers and heavily-pipelined exact-match and TCAM
tables with far more rule space than existing switch ASICs. These
chips would reduce the need for shadow MACs to scale SDN, but
shadow MACs would further extend their system design limits.

6. DISCUSSION

This section suggests additional uses for shadow MACs and dis-
cusses how our work integrates with other trends.

Label-switched trees: While we discussed using shadow MACs
to build label-switched paths, they can also be used to install label-
switched, destination-rooted trees. Managing trees is more efficient
than managing a collection of paths as a tree can route traffic from
all sources to a destination while a path can only route traffic from
one source switch. The result is essentially a version of PAST [37]
where each host can be assigned multiple trees and individual flows
can be assigned to distinct trees at a fine granularity.

Generic label-switched paths and trees: When installing label-
switched paths (or trees), the only endpoint-specific rules are the
ingress and egress rules. Thus, generic paths can be pre-installed
between pairs of switches that are only made endpoint-specific when
the particular ingress and egress rules are installed. We discussed
one use of preinstalled backup paths in Section 2, but this idea can
be extended to maintain some number of spare, pre-installed alter-
nate paths (or trees) per switch-pair, rather per-host-pair. Doing
so allows for aggressive pre-installation of alternate paths, because
there are often one to two orders of magnitude fewer edge switches
than hosts.

Shadow MACs vs. MPLS: Shadow MACs provide similar func-
tionality to MPLS [33], but they do not support label stacking or
label swapping as described. Without switch support for MAC-
in-MAC encapsulation, there is no way to provide an equivalent
of label stacking, but label swapping can be implemented using a
TCAM rule to rewrite one shadow MAC with a different one.

Compatibility with overlay virtualization: The prevalence of
encapsulation [12, 24, 36] in overlay virtual networks [22] dovetails
well with shadow MACs. Rather than needing to rewrite MAC
addresses or trick hosts into using the shadow MAC, shadow MACs
simply can be used as one of a set of MAC addresses belonging to
the destination hypervisor. Shadow MACs become a way to create
completely generic tunnels between hypervisors.

Middleboxes: Since shadow MACs do not correspond to a phys-
ical NIC, they may confuse devices that use MAC addresses for
purposes other than simple forwarding, e.g., middleboxes. There
are two reasons to think that this will not cause many problems.
First, we leave IP addresses untouched, so only devices that look at
L2 headers are affected. Second, the previously mentioned preva-
lence of overlay virtual networks means that many middleboxes are
being designed to strip the outer (overlay) header before processing
packets. Our MAC address rewriting scheme can be implemented
instead as MAC-in-MAC encapsulation and used with these newer
middleboxes.

Scalability: There are two main scalability concerns: forwarding
state requirements and flow setup rate.



Forwarding State Requirements: Shadow MAC forwarding has
two different forwarding state requirements. State at core switches
along the path and state at the ingress and egress switches. The
core state is rules that fit in the large L2 forwarding tables of mod-
ern switches. This means that there are often more than 100,000
entries [18] making them an unlikely bottleneck, particularly if we
use label switched trees rather than paths.

Ingress and egress forwarding state potentially requires MAC
address rewriting which requires TCAM rules in most hardware
switches. This is much more limited, e.g., only 1000 entries [18].
This limits how many shadow MAC paths can start or end at a
given physical switch. Fortunately, in many cases, the ingress and
egress switches are virtual switches which do not suffer from such
stringent space limitations. Further, our ARP spoofing approach
eliminates the need such rules.

Alternately, we can reduce TCAM rule space requirements at
hardware ingress and egress switches by handling most traffic with
normal L2 forwarding, e.g., PAST [37], TRILL [19] or plain Eth-
ernet. Shadow MACs, and thus TCAM rule space, is then reserved
for non-default routing, e.g., during route updates, for traffic engi-
neering, and to provide backup paths for critical traffic.

Flow Setup Rate: The flow setup rate has two possible limita-
tions. The rate at which new flows can be established in switches
and the rate at which new flows can be created in the controller.
Since the switches are fundamentally distributed, they should pro-
vide scale-out performance and not be a bottleneck. In the case
of controllers, modern controllers can reach millions of flow op-
erations per second on a single machine [13]. Further, the work
can be instead done by a cluster of controllers providing scale-out
performance. We leave this to future work.

7. CONCLUSION

We argue that combining an intelligent network edge with a label-
switched core enables scalable fine-grained forwarding and consis-
tent network updates. This design solves several pernicious prob-
lems in hardware SDN deployments, including TCAM space lim-
itations and routing inconsistencies during network updates. We
show that this architecture can be implemented efficiently on to-
day’s commodity (and even legacy) hardware by using virtual des-
tination MAC addresses as opaque forwarding labels. Given the
flexibility and advantages, we believe this approach to networking
is appropriate for future SDN-enabled networks.
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