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ABSTRACT
We present a novel approach to optimize the performance of IEEE
802.11-based multi-hop wireless networks. A unique feature of
our approach is that it enables an accurate prediction of theresult-
ing throughput of individual flows. At its heart lies a simpleyet
realistic model of the network that captures interference,traffic,
and MAC-induced dependencies. Unless properly accounted for,
these dependencies lead to unpredictable behaviors. For instance,
we show that even a simple network of two links with one flow
is vulnerable to severe performance degradation. We designalgo-
rithms that build on this model to optimize the network for fairness
and throughput. Given traffic demands as input, these algorithms
compute rates at which individual flows must send to meet the ob-
jective. Evaluation using a multi-hop wireless testbed as well as
simulations show that our approach is very effective. When opti-
mizing for fairness, our methods result in close to perfect fairness.
When optimizing for throughput, they lead to 100-200% improve-
ment for UDP traffic and 10-50% for TCP traffic.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.4 [Performance
of Systems]: [Modeling techniques]

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Multi-hop wireless networks, Modeling, Optimization, Interference

1. INTRODUCTION
Wireless networks are becoming increasingly ubiquitous inthe

form of WLANs, city-wide meshes, and sensor networks. But ex-
tracting predictable performance from these networks today is no-
toriously hard. A single new flow can lead to a disproportionate
decline in network performance. Attempts to increase network per-
formance, for instance by adding relay nodes to shorten linkdis-
tances, can end up reducing performance. This is in sharp contrast
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to wireline network management, where network operators have
many effective techniques to predict and improve performance.

We seek to develop optimization techniques for wireless net-
works that enable a prediction of the resulting performanceat the
level of individual flows. As motivating examples, considerthree
basic capabilities that are not available today, and to our knowl-
edge, cannot even be approximated easily for real networks.First,
network operators should be able to predict if the network can sup-
port the current or a planned traffic demand. Second, they should be
able to perform “what if” analysis to predict the impact of config-
uration changes such as addition of new flows or routing changes.
Finally, they should be able to predict safe sending rates ofvarious
flows based on policy and path capacity.

We show in the body of the paper that the final capability above
is especially important for good performance. Without appropriate
rate-limiting, network throughput can decline sharply when flows
send more than what the path can support. This degradation can be
severe even in a simple setting of a single flow traversing twolinks.
End-to-end congestion control,e.g., using TCP, while helpful, is
not sufficient to prevent this pathological behavior.

In this paper, we propose a novel model-driven approach for opti-
mizing wireless networks. We focus on static, 802.11-based, multi-
hop networks, though we believe that the general methodology is
applicable to other scenarios. The cornerstone of our approach is
a new model that captures the complex interference, traffic,and
MAC-induced dependencies in the network. These dependencies
are the underlying cause of unpredictable behavior. Capturing them
accurately and in a way that subsequently allows for optimization
is the fundamental challenge in fulfilling our goal.

Despite much work on interference and MAC modeling, none of
the existing models for multi-hop networks fulfills our need. Many
existing models make simplifying assumptions about signalprop-
agation [13], traffic [10, 30, 8, 27], topology [1, 18, 8, 10],or the
MAC layer [14]. These assumptions often do not hold for real net-
works [17]. Many models also have high complexity and may re-
quire an exponential number of constraints [14] or states [27].

Our model strikes a balance between simplicity and realism.Based
on easily collected measurements from the network itself, it char-
acterizes the set of feasible network configurations and traffic as-
signments using very few constraints. Givenn links that are ac-
tively sending traffic, our model hasO(n2) complexity and only
O(n) constraints. Despite its simplicity, our model can handle real-
world complexities such as hidden terminals, non-uniform traffic,
multi-hop flows, and non-binary interference.

We then develop optimization algorithms that compute rate-limits
for flows according to the specified performance objective. These
algorithms take flow demands as input and use our model as a basic
building block. The two performance objectives that we consider



in this paper are maximizing fairness and maximizing total network
throughput. To our knowledge, such goal-driven and preciseopti-
mization for multi-hop wireless networks was not possible before.

Evaluation using a multi-hop wireless testbed and simulation ex-
periments shows that our approach is highly effective. Across a
range of topology and traffic configurations, it is able to accurately
approximate the throughput that the network yields. It rarely under-
predicts, and for 80% of the cases, its estimate is within 20%of the
actual throughput. When maximizing fairness using our methods,
we achieve close to perfect fairness amongst flows for both UDP
and TCP traffic. When maximizing throughput, we find that our
methods can improve network throughput by 100-200% for UDP-
based traffic and 10-50% for TCP-based traffic. Interestingly, we
also find in our experiments that the exact choice of routing proto-
col is not important for good performance; what matters instead is
that flows be rate-limited per the desired performance goal.

In summary, our work to predictably optimize wireless networks
makes the following contributions.

• It shows that rate-limiting flows to levels that the network can
safely support is critical for good performance; otherwise,
network throughput can sharply degrade even in very simple
settings (Section 2).

• We develop a novel approach to optimize multi-hop wireless
networks (Section 3). Our approach includes a simple yet re-
alistic model of network throughput under interference- and
MAC-induced dependencies (Section 4). We design algo-
rithms that use this model to optimize for fairness amongst
flows and for throughput (Section 5).

• We evaluate our approach using extensive testbed and sim-
ulation based experiments (Sections 6–9). The evaluation
shows that it can accurately predict network throughput, achieve
close to perfect fairness, and substantially improve network
throughput.

2. MOTIVATION
The goal of our work is to enable systematic optimization of

multi-hop wireless networks, whose resulting performancecan be
predicted at the level of individual flows. We motivate this goal
using examples of abilities that an operator may want but does not
have today. These abilities are all pretty basic when it comes to
managing networks and are available in wired networks today.

1. Determine whether the current or a planned traffic matrix can
be supported by the network. This is an essential capability
for network planning as it tells the operators when to add
more resources,e.g., additional radios on orthogonal chan-
nels or directional antennae to reduce interference.

2. Perform “what if” analysis on various configuration changes,
to judge the impact of a change on the network. Such an anal-
ysis should be able to answer questions such as the following.
What if a new flow is added between two nodes? What if a
particular link or node is removed from the network? What
if a particular routing change is implemented?

3. Compute and cap the sending rate of individual flows based
on network polices and path capacity. This again is espe-
cially important in wireless networks. A flow that sends more
impacts not only those flows that it shares links with (as is
the case in wired networks), but also many other flows in the
vicinity due to interference. More importantly, as we show
below, a flow that sends more than what the path supports
can cause a sharp decline in throughput. This decline is rem-
iniscent of congestion collapse in wired networks.

As we discuss later, our optimization strategy relies on comput-
ing flow rates such that the specified performance objective is met.
Here, we show that limiting flow rates is essential to obtaining good
performance from the network. Without it, severe performance
degradation can occur.

UDP traffic We illustrate this point using the two simple topolo-
gies in Figure 1(a). Both have one reliable (“good”) link andone
lossy (“bad”) link but the order of the two links is different. Using
QualNet [28], we simulated the case ofS sending 512-byte UDP
packets toD as fast as possible. Unless otherwise specified, our
experiments use 802.11a and 6 Mbps MAC bit rate throughout the
paper.

Figure 1(b) shows that the throughput of the two topologies as a
function of loss rate on the bad link are very different. At a loss rate
of 0.5, the throughput of the good-bad topology is less than half of
the bad-good topology.

The reason for this disparity is the following. For a successful
reception in the good-bad topology,Sneeds to transmit a packet to
R only once, butR has to transmit toD more than once. Since the
802.11 MAC allocates the medium fairly amongSandRunder sat-
urated demands, the incoming traffic atR is more than the outgoing
traffic, and many packets sent bySare eventually dropped atRdue
to queue overflow. These wasted transmissions ofScompete with
those fromR and reduce the throughput of the good-bad topology.
Such wastage does not exist in the bad-good topology becauseR
can send all incoming traffic.

This problem cannot be solved by RTS/CTS because both trans-
mitters can hear each other and there is no hidden terminal. More-
over, simply changing the MAC allocation policy will not fix the
problem in the general case because the bottleneck can be multiple
hops away from the source.

The wastage in the good-bad topology leads to a sharp decline
in throughput as the sending rate is increased. Figure 1(c) plots the
throughput of the two topologies asSincreases its sending rate. The
loss rate is configured to 0.5. In the good-bad topology, increasing
the sending rate beyond a threshold sharply degrades throughput.
This threshold represents the sending rate ofSat whichRcan relay
all received packets. Beyond it,Rcannot keep up as the medium is
increasingly occupied by the transmissions fromS that are eventu-
ally dropped. The throughput stabilizes when the medium usage of
Rdecreases to half.

The graph also shows that the two topologies have the same max-
imum capacity, but in the good-bad case, it can be achieved only if
we limit S to the threshold sending rate. However, none of the cur-
rent routing protocols give rate feedback. Moreover they cannot
even distinguish between these two paths. The path quality as mea-
sured by current protocols will be the same for both topologies.

This sharp decline in throughput is reminiscent of congestion
collapse in the Internet. But it is unique in that it is causedby a
single flow over a very simple topology. Known examples of con-
gestion collapse in wired networks [6] involve more complexcon-
figurations. A key difference is that the capacity of the bottleneck
link in a wired network is not impacted by other links, but in wire-
less networks interference reduces bottleneck capacity when other
links are active.

Figure 2 confirms that this pathology can be replicated in the
more realistic testbed setting as well. We emulate different loss
rates in the testbed by changing the distance between the machines
and varying layers of foil around the wireless cards. Figure2(a)
shows that the two topologies perform differently whenSsends as
fast as possible. Figure 2(b) shows the sudden throughput decline
in the good-bad topology when the bad link has roughly 50% loss.
Thex-axis in this graph denotes the fraction of the fastest possible
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Figure 1: The importance of rate feedback. (a) Two topologies that differ in where the lossy link occurs. (b) Throughput as a
function of loss rate whenSsends as fast as possible.(c) Throughput as a function of the sending rate when the loss rate of the bad
link is 0.5.
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Figure 2: Testbed experiments confirm the importance of rate
control. (a) Throughput vs. loss rate in the two topologies.(b)
Throughput vs. sending rate in the good-bad topology when
the loss rate on the bad link is 0.5.
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Figure 3: The topology for the TCP example.

sending rate. When the sending rate factor is 1, the source sends
packets back-to-back. The curve is not as smooth because theloss
rate in the testbed cannot be precisely controlled. Overall, these
results confirm the ill-effects of not controlling sending rates.

TCP traffic Similar problems occur with TCP as well be-
cause TCP’s built-in rate control and congestion response are not
well-suited for the wireless environment. Consider a star topology
shown in Figure 3, where all links are reliable. There are twocom-
peting TCP flows 1→ 5 and 2→ 4. We find performance degra-
dation due to overload when the central node cannot relay allthe
traffic sent by its neighbors. With 1024-byte packets, in theab-
sence of additional rate limiting, the two flows get 0.805 Mbps
and 0.740 Mbps, respectively. In comparison, if we limit their
application-layer sending rates using our optimization framework
(see Section 5) and constrain the burstiness of TCP by limiting
the TCP sender buffer to 2 packets, the two flows get 1.066 Mbps
and 1.064 Mbps, respectively, which translates to 37.9% increase
in total throughput. With 512-byte packets, rate limiting results
in 20.8% increase in total throughput. This example demonstrates
that TCP is unable to appropriately set its rate to where it can max-
imize throughput. This is likely because TCP’s aggressive band-
width probing makes the flows stabilize at a loss rate higher than
the loss rate under maximum throughput [7].

3. APPROACH
The previous section showed that dependencies introduced by in-

terference and MAC can lead to significant performance problems
in wireless networks. Thus, any optimization strategy mustbe able
to model and predict these effects. We develop a model-driven op-
timization approach. We focus on IEEE 802.11-based networks,
though our framework would be useful for other MAC protocolsas
well, which we plan to investigate in the future.

We need a model with the following two properties. First, it
provides an accurate and compact characterization of the feasible
solution space, which can then be incorporated in an optimization
procedure to find a high-performance configurations. Second, it
strikes a balance between fidelity, generality, and tractability, which
is crucial for optimization to be effective and efficient.

We develop a novel model that satisfies both requirements. It
has low complexity. Givenn links that are actively sending traffic,
our model hasO(n2) complexity. It consists ofO(n) constraints
that capture the inter-dependency between throughput, transmis-
sion probabilities, and packet loss rates of different links. These
constraints collectively characterize the set of network configura-
tions and traffic assignments that can be achieved in 802.11 net-
works. In contrast, many existing models are complex and mayre-
quire an exponential number of state variables [27] or constraints [14]
in the worst case. Despite its simplicity, our model is general and
realistic. It is based on easily collected measurements from the
underlying network and is thus more accurate than abstract mod-
els of RF propagation such as those based on distance. It also
deals with real-world complexities such as hidden terminals, non-
uniform traffic, multi-hop flows, and non-binary interference. In
contrast, existing interference models often impose restrictive as-
sumptions about signal propagation [13], traffic [10, 30, 8,27],
topology [1, 18, 8, 10], or the MAC layer [14]. These assumptions
rarely hold for real networks [17].

Our model can be used in several ways for wireless network op-
timization. First, it can be used to answer “what-if” questions, such
as testing whether desired end-to-end throughput can be achieved
(see Section 5.1). It can also predict the performance underdiffer-
ent network configurations, such as the impact of enabling ordis-
abling RTS/CTS. Second, in conjunction with an efficient search
mechanism, the model can be directly applied to optimize certain
performance objectives when there are only a small number ofcon-
trol parameters. This is the case for fair rate allocation, which has
a single optimization parameter (see Section 5.2). Third, the con-
straints of our model can be linearized and incorporated into an
optimization procedure. This is the case for network throughput
maximization, which has many parameters (see Section 5.3).



EPi Expected payload transmission time for Linki
Tslot Regular slot time
Tdat

i DATA duration on Linki from source to destination)
Tack

i ACK duration on Linki from destination to source)
Ldat

i Inherent DATA loss rate on Linki from source to destination)
Lack

i Inherent ACK loss rate on Linki from destination to source)
Dsrc

i j Probability for Link i’s source to carrier sense Linkj ’s source
Ddst

i j Probability for Link i’s source to carrier sense Linkj ’s destination
Si j Synchronous collision loss probability for Linki due to Link j ’s transmission
Ai j Asynchronous collision loss exponent for Linki due to Link j ’s transmission
Wi j Expected waiting time for Linki when Link j 6= i is transmitting.Wii is the

expected time for Linki to complete a transmission.
τi Probability for Link i to transmit in a random variable-length slot (VLS)
pi Total packet loss rate on Linki.
µi Expected VLS duration of Linki
gi Throughput of Linki
θi Probability for Link i to start sending at a random slot time

Table 1: Model constants (upper case) and variables.

4. OUR MODEL
In this section, we develop a model for IEEE 802.11 that can

be used for model-driven optimization. We describe our model in
terms of network “links.” Links are unidirectional, and each link
has a unique source-destination pair of nodes.

4.1 Basic Model of 802.11 DCF
We first develop a basic model of 802.11 DCF for the base case in

which all flows are one-hop UDP flows and RTS/CTS is disabled.
We then extend the model to support RTS/CTS, multi-hop flows,
and different transport protocols in Section 4.2.

4.1.1 Assumptions
Our model makes two key assumptions:

A1. It assumes pairwise interference,i.e., the interference rela-
tionship between two links is independent of activities on
other links. Previous works show that pairwise interference
is good approximation in real networks [25, 23].

A2. It assumes that different types of loss (e.g., collision loss and
inherent wireless medium loss) are independent.

While these assumptions do not always hold in practice, they
are a reasonable approximation to the reality. Under these assump-
tions, we do not need to model intricate interactions among differ-
ent links,e.g., links A andB interfere only when linksC andD are
active. As a result, our model becomes significantly simplified —
it hasO(n2) complexity and onlyO(n) constraints, wheren is the
number of active links. In Section 7, we use simulations and testbed
experiments to show that our model is quite accurate despitethese
simplifications.

4.1.2 Constraints
Following Bianchi’s approach [1], we divide time intovariable-

length slots (VLS)for each link.

• When the link senses a clear channel and either has no data to
send or its backoff counter has not yet reached 0, the current
VLS lasts for a regular slot timeTslot.

• When the link senses a clear channel, has data to send, and
its backoff counter is 0, it sends a packet and the current VLS
lasts for the entire packet transmission.

• When the link senses a busy channel, the current VLS lasts
until the channel is clear for a DIFS duration.

Our model consists of four types of constraints that capturethe
inter-dependency between throughput, transmission probability, packet

loss rate, and VLS duration of different links. We describe these
constraints below. Table 1 summarizes the notations, wherecon-
stants are in upper case and variables are in lower case. To ensure
consistency, we use slot timeTslot as the common unit for the cal-
culation of time in our model.

Throughput constraint The throughput constraint relates through-
put to transmission probability, packet loss rate, and VLS duration.
Let τi be the probability for Linki to start a packet transmission
during a VLS. Letpi be the loss probability for such a packet trans-
mission. Letµi be the expected duration of a VLS at Linki. Let
EPi be the expected payload transmission time at Linki. Then, the
throughput for Linki, denoted bygi , is simply the fraction of time
that it spends on successful payload transmissions:

gi =
EPi × τi × (1− pi )

µi
(1)

VLS duration constraint The VLS duration constraint relates
the expected VLS durationµi to transmission probabilityτ j :

µi = Tslot+∑
j

[

(Wi j −Tslot)× τ j
]

(2)

whereWi j ( j 6= i) is the expected amount of time for Linki to wait
due to carrier-sense for Linkj to complete a transmission, andWii is
the expected amount of time for Linki to complete a transmission.

We estimateWi j andWii as follows. LetLdat
j be the inherent

DATA loss rate on Linkj . LetDsrc
i j andDdst

i j be the probabilities for
Link i to carrier sense Linkj ’s source and destination, respectively.
Let Tdat

j be the expected duration of DATA transmission on Link
j , which consists of a DIFS duration, a MAC preamble duration,
the transmission time for the payload and packet headers. Let Tack

j
be the expected duration of ACK transmission on Linkj , which
consists of a SIFS duration, a MAC preamble duration, and the
transmission time for an ACK. We then estimateWi j andWii as:

Wi j = Dsrc
i j ×Tdat

j +Ddst
i j ×Tack

j × (1−Ldat
j )

Wii = Tdat
i +Tack

i × (1−Ldat
i )

We have made two simplifications above. We ignore the effect
of collision loss on VLS duration and use only the inherent DATA
loss rateLdat

j to estimate the probability for a DATA transmission to
succeed. This simplification turnsWi j andWii into constants instead
of variables at the expense of slightly overestimating the expected
VLS duration. We also ignore the effect of NAV onWi j , i.e., we
assume that Linki waits for Link j ’s ACK only if it is transmitted.
In reality, if Link i successfully receives Linkj ’s DATA, it would
wait even if no ACK is transmitted because of the NAV value em-
bedded in Link j ’s DATA. The latter simplification may result in
slight underestimation of the expected VLS duration, but the effect
is small because ACK is typically much shorter than DATA.

Loss rate constraint The loss rate constraint relates packet
loss rate to transmission probability. To compute packet loss rate
pi , we model both inherent medium loss and collision loss. Follow-
ing [27], we further distinguish between two types of collision loss:
(i) synchronous loss that occurs when the two senders can carrier
sense each other; and (ii) asynchronous loss that occurs when at
least one sender cannot carrier sense the other.

Assuming independence among different types of loss causedby
different links, the packet success probability of Linki is

1− pi = (1−Ldat
i )× (1−Lack

i )×∏
j 6=i

[

(1− ℓ
sync
i j )× (1− ℓ

asyn
i j )

]



whereLdat
i andLack

i are the inherent loss rate of DATA and ACK on
Link i; ℓ

sync
i j andℓ

asyn
i j are synchronous and asynchronous collision

loss on Linki caused by Linkj , which can be modeled as follows.

• The synchronous collision loss rate is given byℓ
sync
i j = Si j τ j ,

whereτ j captures the probability for Linkj to start transmit-
ting at the same time as Linki, andSi j is the probability for
a packet on Linki to get lost due to collision with a packet
on Link j conditioned on the fact that the two packet trans-
missions start at the same time. Note that a packet is lost
when either its DATA or ACK is lost. SoSi j combines the
conditional loss rates of DATA and ACK.

• The asynchronous collision loss rate is given byℓ
asyn
i j = 1−

(1− θ j )
Ai j , whereθ j

△
=

τ j
µ j

is the probability for Link j to
start transmitting at a random time instant. It is obtained by
normalizingτ j by the expected VLS durationµ j . Ai j is the
asynchronous collision loss exponent defined as

Ai j
△
=

∫ Tµ

−Tµ
Ci j (x)dx,

whereTµ is the maximum duration of a packet transmission,
Ci j (x) is the conditional probability for a packet on Linki to
get lost due to collision with a packet on Linkj when the start
times of the two packet transmissions differ by offsetx. Thus,
Ci j (0) = Si j . To understand the intuition behind the defini-
tion of Ai j , imagine that we divide time into bins of fixed
width ∆x. For a given time bin at offsetx, the probability for
Link j to start a transmission in it isθ j∆x. Similar to the anal-
ysis of synchronous collision loss, the probability for Link
j ’s packet to cause collision loss in Linki’s packet at offsetx
is given byCi j (x)θ j ∆x. The probability for Linki’s packet to
succeed despite collision with Linkj ’s packet can therefore
be approximated as 1−Ci j (x)θ j ∆x ≈ (1− θ j)

Ci j (x)∆x. As-
suming independent collision loss for different offsets, the
total asynchronous collision loss probability for Linki can
therefore be approximated by

1− ∏
x∈[−Tµ ,Tµ ]

(1−θ j )
Ci j (x)∆x = 1− (1−θ j )

∑x∈[−Tµ ,Tµ ]Ci j (x)∆x

whose limit becomes 1−(1−θ j)
∫ Tµ
−Tµ Ci j (x)dx

= 1−(1−θ j)
Ai j

as∆x tends to 0.

Putting it all together, we can model packet loss ratepi as a func-
tion of transmission probabilityτ j andθ j =

τ j
µ j

:

pi = 1 − (1−Ldat
i )× (1−Lack

i )×

∏
j 6=i

[

(1−Si j τ j )× (1−θ j )
Ai j

]

(3)

Feasibility constraint With 802.11 DCF, the transmission prob-
ability τi is feasible if and only if it is bounded by a function of the
packet loss ratepi . Specifically, we have [1, 27]

τi ≤
2

2+CW(pi)
, (4)

whereCW(pi) = CWmin + pi × (1+CWmin)×∑M−1
k=0 (2pi)

k is the
expected contention window size under packet loss ratepi , CWmin
is the minimum contention window size in slots. For 802.11a,

CWmin=15,M = log2

(

CWmax+1
CWmin+1

)

, andCWmax=1023.

4.2 Extensions to the Basic Model
We now extend the basic model above to support RTS/CTS, multi-

hop flows, and TCP traffic. In the interest of space, we only present
the key ideas.

RTS/CTS To support RTS/CTS, we make two modifications.
First, in the VLS constraint (Eq. 2), constantsWi j andWii are up-
dated to account for the additional delay introduced by RTS and
CTS. Second, the loss rate constraint (Eq. 3) is extended to incor-
porate the inherent RTS and CTS loss rates,Lrts

i andLcts
i , and the

additional collision losses involving RTS and CTS.

Multi-hop flows Given routing information, we can convert
multi-hop UDP flows into one-hop UDP flows. Specifically, letx =
〈xd〉m×1 be the vector of end-to-end flow rates. LetR= [Rid ]n×m
be then×m routing matrix, whereRid is the fraction of Flowd that
traverses Linki. Let g = 〈gi〉n×1 be the vector of link loads. Then,
we have

g = R·x (5)

Note that the conversion above applies only when the end-to-end
flow rates arefeasible. If the end-to-end flow rates are infeasible, a
multi-hop flow may result in more traffic on hops near the origin,
which cannot be carried forward by the subsequent hops. Restrict-
ing to only feasible flow rates is not a problem for model-driven
optimization because we only need to consider feasible flow rate
assignments.

TCP traffic Finally, when TCP is used as the transport layer
protocol, we also need to take into account the TCP acknowledg-
ment traffic. To convert multi-hop TCP demands into one-hop link
demands, we replace the routing matrixR in Eq. 5 with a new rout-
ing matrix RTCP that combines the forward and reverse direction
of TCP connections. Specifically, letRfwd andRrev be the routing
matrix for the forward and reverse direction of TCP connections,
respectively. We define

RTCP
△
= Rfwd +α ×Rrev, (6)

where the coefficientα reflects the size and frequency of TCP ac-
knowledgments. Assuming that TCP acknowledgments containno
payload, without TCP delayed acknowledgments, we simply set
α = H

H+EP, whereH is the total size of IP and TCP headers, and
EP is the expected payload size. With TCP delayed acknowledg-
ments enabled, we setα = 0.5× H

H+EP.

4.3 Model Initialization
To apply our model, we need to initialize the constants in Ta-

ble 1. The key constant are: (i) inherent loss ratesLdat
i , Lack

i , Lrts
i

andLcts
i ; (ii) carrier sense probabilitiesDsrc

i j andDdst
i j ; and (iii) col-

lision loss parametersSi j andAi j . For simplicity, we estimate these
parameters by conducting pairwise broadcast measurements[25],
but our model can just as easily use the inputs inferred by more
scalable approaches [27].

1. We first let one Nodea send alone. All the other nodes record
the receiving rates froma. Dividing the receiving rates by
a’s sending rate yields the inherent loss rates for all links
from a. ACK, RTS, and CTS are smaller than the smallest
UDP packets. We approximate their inherent loss rate by
broadcasting UDP packets with 1-byte payload.

2. We next have two nodesa andb send simultaneously. By
comparinga’s sending rates when botha and b are send-
ing, we can estimate the probability fora to carrier senseb.
Specifically, we can show thata’s broadcast packet sending



rate whenb is transmitting is given by

τa

Tslot+(Ta−Tslot)× τa +(Tb−Tslot)× τb×Dab
,

whereτa = τb = 2
2+CWmin

for saturated broadcast traffic,Dab
is the probability fora to carrier senseb, Ta andTb are the
packet transmission times including preamble and header. So
we can easily compute the single unknownDab based on the
measured sending rate ofa.

3. To estimateSi j andAi j , we evaluate the conditional loss prob-
ability Ci j (x) for different offsetsx between the start times of
the two packet transmissions on Linksi and j . Based on
carrier sense probabilities, we estimate the probability for a
broadcast transmission on Linki to overlap with a broadcast
transmission on Linkj . We denote this overlapping proba-
bility by Obcast

i j and compute it by applying the two-sender
broadcast model of [27]. We denote the conditional loss
probability for Link i when transmissions on the two links
overlap byCbcast

i j . It is computed based on

Rbcast
i j = (1−Lbcast

i )× (1−Obcast
i j ×Cbcast

i j )

Above,Lbcast
i is the inherent loss rate on Linki, andRbcast

i j is
the broadcast receive rate for Linki when both links are send-
ing. Finally, we computeCi j (x) by combining the collision
loss rate for all steps of a packet transmission,i.e., DATA,
ACK, and if applicable, RTS, CTS.

5. MODEL-DRIVEN OPTIMIZATION
In this section, we apply our model to optimize wireless per-

formance. Our overall optimization strategy is to compute send-
ing rates for all flows based on their demands, the network topol-
ogy, and the optimization objective. We first describe an algorithm
to test whether a given flow rate assignment is achievable in Sec-
tion 5.1. We then consider maximizing fairness in Section 5.2 and
maximizing total throughput in Section 5.3.

5.1 Flow Throughput Feasibility Testing
Our goal is to test whether a given set of link throughputgi ’s

is achievable. The main challenge is that there is strong inter-
dependency between the transmission probability and the loss rate
of different links. The transmission probability of a Linki, τi , de-
pends on the transmission probability of the other links, which in
turn depends onτi . To address the inter-dependency, we use an
iterative procedure to jointly estimate the transmission probabili-
ties and loss rates. We initialize the collision loss and transmission
probabilities at all links to be 0. We then iteratively update link
transmission probabilities and loss rates based on the other links’
transmission probabilities and loss rates derived in the previous it-
eration. Figure 4 outlines the algorithm.

To estimate〈τi〉 given 〈θi〉 (Line 4 in Figure 4), we note that
θi = τi

µi
= τi

Tslot+∑ j [(Wi j−Tslot)×τ j ]
. Therefore, we can estimate〈τi〉 by

solving the following system of linear equations
{

Tslot+∑
j

[

(Wi j −Tslot)× τ j
]

}

×θi = τi , i = 1,2, . . . ,n (7)

The iterative procedure continues until the number of iterations
reaches a threshold, or the throughput values no longer change sig-
nificantly, or a feasibility constraint (Eq. 4) is violated.We bound
the number of iterations to twenty, which works well in our exper-
iments.

⊲ Input: a vector of link throughput〈gi〉; ⊲ Output: whether〈gi〉 is feasible
1. initialization : f easible= 0, τi = 0, pi = 0 (i = 1,2, . . . ,n)

// iterative model evaluation (MaxIter= 20 by default)
2. for iter = 1 to MaxIter
3. θi =

gi
EPi×(1−pi )

i = 1,2, . . . ,n
4. 〈τi〉 = estimate_tau_from_theta(〈θi〉)
5. 〈pi〉 = compute_packet_loss_rates(〈τi〉,〈θi〉) // according to Eq. 3
6. if any i whose (τi > 2

2+CW(pi )
)

7. f easible= 0; break // early stop: infeasible
8. end if
9. g′i =

τi×(1−pi )×EPi
Tslot+∑ j [(Wi j −Tslot)×τ j ]

10. if ( maxi{|gi −g′i |} < TOL ) // convergence test (TOL= 0.01 by default)
11. f easible= 1; break // early stop: feasible
12. end if
13. end for
14. return f easible

Figure 4: Link throughput feasibility testing.

⊲ Input: routing matrixR= [Rid ]n×m, end-to-end demandx∗ = 〈x∗d〉 (d ∈ [1,m])
⊲ Output: weighted max-min fair rate allocation:x = 〈xd〉

1. initialization : unsatSet= {1, . . . ,m}, xd = 0
2. while (unsatSet6= /0)

// try to scale up the unsaturated demandsxunsatas much as possible

3. xunsat
d =

{

x∗d if d ∈ unsatSet
0 otherwise (d = 1, . . . ,m)

// find largest scale∈ [0,1] for R(x+scale×xunsat) to remain feasible
4. scale= get_max_scaling_factor(Rxunsat,Rx)
5. z = x+scale×xunsat

// find the set of demands that become saturated
6. if (scale> 1− ε) // ε = 10−4 by default
7. x = z; break // all unsaturated demands can be satisfied
8. end if
9. for eachd ∈ unsatSet

10. y = z; yd = (1+ ε)×yd
11. f easible= test_link_throughput_feasibility(Ry)
12. if (not f easible)
13. xd = zd; unsatSet= unsatSet−{d} // d has become saturated
14. end if
15. end for
16. end while
17. return x = 〈xd〉

Figure 5: Algorithm for fair rate allocation

5.2 Fair Rate Allocation
Given the feasibility test for link throughputs, we use it asa basic

block for achieving weighted max-min fair rate allocation.This
allocation takes routing and traffic demand matrices as input.

Figure 5 outlines the algorithm, which is effectively basedon
iterative water-filling. Letx∗ = 〈x∗d〉 be the end-to-end demand.
Let R = [Rid ]n×m be the routing matrix, whereRid is the frac-
tion of Flow d that traverses Linki. The vector of link loads is
given byR· x. Initially, the algorithm marks all demands as un-
saturated. In each iteration, the algorithm tries to scale up all the
unsaturated demands as much as possible until at least one unsat-
urated flow is saturated,i.e., it cannot be scaled up further with-
out violating a feasibility constraint. The maximum scaling fac-
tor scale∈ [0,1] is found efficiently through bisection search in
the subroutineget_max_scaling_factor(gunsat,gsat) (Line 4 in Fig-
ure 5). The iteration continues to scale up the remaining unsatu-
rated demands until all demands are saturated.

5.3 Total Throughput Maximization
We optimize the network for maximum total throughput by for-

mulating a non-linear optimization problem. This problem is solved
by linearizing the non-linear constraints and solving a series of lin-
ear programs.

As before, letx∗ = 〈x∗d〉 be the end-to-end demand andR =
[Rid ]n×m be the routing matrix. LetRi be thei-th row vector of
R. The problem of maximizing total end-to-end throughput canbe



1. initialization: x(0)
d = 0, τ (0)

i = 0, for ∀d∀i
2. for k = 1 to KMAX
3. letxopt andτopt be the optimal solution to the linear program (LPk)
4. x(k) = xopt

5. repeat // ensure solution feasibility
6. x(k) = x(k−1) +α × (x(k) −x(k−1))
7. f easible= test_link_throughput_feasibility(Rx(k))
8. until ( f easible= true)
9. x(k) = 0.99×x(k)

10. end for
11. return x (k)

Figure 6: Algorithm for maximizing total throughput.

cast into the following non-linear optimization problem (NLP).

maximize ∑
d

xd

subject to















Ri x ≤ Fi(τ) ∀i
Gi(τ) ≤ 0 ∀i
0≤ xd ≤ x∗d ∀d
0≤ τi ≤ 1 ∀i

(NLP)

whereFi(τ)=
EPi×τi×(1−pi)

Tslot+∑ j (Wi j−Tslot)×τ j
andGi(τ)= τi−

2
2+CW(pi)

. There-

fore, constraintsRi x≤Fi(τ) encode the linear relationship between
end-to-end throughputx and link throughput; constraintsGi(τ)≤ 0
encode the feasibility constraint (Eq. 4).

We solve the NLP above through iterative linear programming,
as shown in Figure 6. In each iteration, we linearize the non-
linear constraints in the NLP using their first-order approximation.
Specifically, letx(k−1) andτ(k−1) be the estimate ofx andτ in itera-
tion (k−1). LetF∗

i (τ) andG∗
i (τ) be the first-order approximations

of Fi(τ) andGi(τ), respectively.F∗
i (τ) andG∗

i (τ) are then:

F∗
i (τ) = Fi(τ(k−1))+∑

j
(τ j − τ(k−1)

j )×
∂

∂τ j
Fi(τ(k−1)) (8)

G∗
i (τ) = Gi(τ(k−1))+∑

j
(τ j − τ(k−1)

j )×
∂

∂τ j
Gi(τ(k−1)) (9)

In the interest of brevity, we omit the details on how to compute all
the partial derivatives above.

SubstitutingF(τ) andG(τ) with F∗(τ) andG∗(τ) in (NLP), we
obtain the following linear program:

maximize ∑
d

xd

subject to















Ri x ≤ F∗
i (τ) ∀i

G∗
i (τ) ≤ 0 ∀i

0≤ xd ≤ x∗d ∀d
0≤ τi ≤ 1 ∀i

(LPk)

We then derivex(k) andτ(k) by solving the linear program (LPk).
The optimal solution to (LPk), however, cannot be directly used be-
cause the LP is only an approximation to the original NLP. There-
sulting solution may not satisfy the constraints in the original NLP.
To ensurex(k) satisfies NLP, we apply a simple line search to find
a point on the line betweenx(k−1) andx(k) that is feasible. Dur-
ing the line search, the distance betweenx(k) and x(k−1) shrinks
exponentially fast. Since we guarantee the feasibility ofx(k−1), we
can quickly find a feasible solution. In our evaluation, we set the
shrinkage ratio toα = 0.5. Finally, to better deal with numerical
imprecision in our feasibility test, we scale downx(k) by 1% at the
end of each iteration (Line 9 in Figure 6).

Since our problem is NLP, we cannot guarantee a global opti-
mal solution. To improve the quality of the final solution, weuse
multiple starting points. We always include an all-zero starting
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Figure 7: The amount of traffic sent to an AP in 10-second in-
tervals. Top: At a WiFi hotspot. Bottom: At SIGCOMM 2004.

points (i.e., all flows are inactive). To favor flows that are more
likely to achieve higher throughput, we also add (Ninit −1) starting
points, each with only a single active flow. Specifically, foreach
d = 1, . . . ,n, we find the largestxinit

d ≤ x∗d such that it is feasible for
flow d to send at ratexinit

d while all other flows are inactive. This can
be done efficiently using the subroutineget_max_scaling_factor

(see Section 5.2). We then select the (Ninit − 1) flows with the
largestxinit

d , reduce their rates by a constant factor (2 by default) so
that they are not too close to the boundary of the feasible solution
space, and include the resulted traffic assignments as our starting
points. In our experiments, we useNinit = 4 starting points. How-
ever, our experience suggests that even a single all-zero starting
point often yields good performance.

5.4 Discussion
We now discuss certain practical aspects of our optimization

strategy. Our algorithms can be implemented at a central location,
such as in Tesseract [34], or in a fully distributed manner. The dis-
tribution is similar to that in link-state protocols such asOSPF, in
which all nodes implement the same algorithm, over the same data,
and thus arrive at consistent solutions. Apart from topology infor-
mation, distributing our algorithms also needs demand estimates
for various flows.

Another aspect that is related distributed implementationis the
computational requirements of our approach. An exact quantifi-
cation is a subject of ongoing work, but in our experiments we
have not found it to be a problem. In our unoptimized implemen-
tation, rate computations are practical for online optimization. For
instance, in our experiments, it takes roughly three seconds to opti-
mize ten flows in 25-node topologies.

Finally, our methods use flow demands as inputs for optimiza-
tion. We propose that nodes base their estimates on recent his-
tory. Such a strategy is effective only if there is temporal stability
in flow demands. While wireless meshes are not significantly de-
ployed yet to settle this question with certainty, we gain insight into
this issue by studying wireless usage in two different environments
– at a WiFi hotspot in Seattle and at the SIGCOMM 2004 confer-
ence [22]. Figure 7 shows for 10-second windows, the actual traffic
sent to an AP and the traffic predicted by EWMA (α=0.5) over his-
tory. We see that traffic exhibits a high degree of temporal stability
and EWMA predicts future traffic fairly accurately. What visually
appears as sharp peaks and valleys in traffic are in fact composed of
multiple time intervals, compressed so that we can show a two-hour
period. The average traffic volume is 723.5 Kbps for the hotspot
trace and 43.77 Kbps for the SIGCOMM trace. The mean absolute
error (MAE), defined asmean(|Estimated−Actual|), is 200 Kbps
for the hotspot trace and 15 Kbps for the SIGCOMM trace. Our
rate-limiting would actually even out those spikes if thereis not



enough capacity in the network. Suppose the APs that we measure
were nodes in a city-wide wireless mesh, aggregating trafficfrom
similar clients and sending it to a nearby gateway on the multi-hop
mesh backhaul. Then, by extrapolating from these environments,
we judge that the nodes would be able to obtain reasonable esti-
mates of their demands.

6. EVALUATION METHODOLOGY
We evaluate the accuracy of our approach using extensive testbed

and simulation experiments. The former provides a setting with
real-world complexities. The latter lets us conduct a broader range
of experiments and also lets us vary parameters such as topology
that we cannot control for the testbed.

We divide our empirical results across three sections.
• In Section 7, we evaluate the accuracy of our model.
• In Section 8, we evaluate the degree to which our model can

improve performance for both goals, maximizing fairness and max-
imizing total throughput. We quantify fairness using the classic
Jain’s fairness index, which is defined as(∑xi)

2/(n∗∑xi
2) for de-

mandsx1...xn.
• In Section 9, we show that it is rate-limiting that is critical to

network performance. Exactly how the routes are chosen is less
important.

In the first two sections, we use ETX as the routing protocol.
ETX selects the path that minimizes the total number of expected
transmissions from a source to its destination [3].

6.1 Strawman: Conflict Graph Model
We compare our approach to one based on the conflict graph

(CG) model of interference[14]. We note that the use of CG model
has not been proposed in practical settings, but it providesan inter-
esting comparison point in our evaluation.

The CG-based model assumes that packet transmissions at indi-
vidual nodes can be finely controlled. It represents wireless links as
conflict vertices and draws a conflict edge between two conflict ver-
tices if and only if the corresponding wireless links interfere. Based
on the definition, it is clear that links corresponding to conflict ver-
tices in a clique in the conflict graph cannot be active simultane-
ously. Therefore, an upper bound of optimal wireless throughput
can be computed by solving a linear program (LP) which specifies
the goal of maximizing the total traffic delivered to the destination
while satisfying flow conservation and clique constraints.

We apply this formulation to derive the rate limits that maxi-
mize the total throughput. When applied to different route selection
schemes, we enforce traffic to follow the selected routes by adding
the following linear constraints. For each Demandd and each Link
e, Td,e ≤ Cape× zd,e, whereTd,e is the amount of traffic success-
fully routed for demandd on link e, Cape is the capacity of linke,
andzd,e = 1 if e is used to route demandd and 0 otherwise.

To maximize fairness, we use a similar formulation. The main
difference is that we change the objective to maximizing thetotal
throughput across all the flows and the portions of their demands
that are achieved. This can be expressed as∑d ∑r(e)=dest(d)Td,e+

λα ∑d xd, wherer(e) is the receiver of Linke, dest(d) is destina-
tion of Demandd, xd is traffic demand,α is the minimum propor-
tion of its demand that can be achieved, andλ controls the relative
importance of these two objectives. In addition, we add the con-
straints to ensure that each flow receives throughput no lessthan
αxd (i.e., for each Demandd, ∑r(e)=dest(d) Td,e ≥ αxd). Our eval-
uation usesλ = 100 to significantly favor the solution with high
fairness when maximizing fairness.

6.2 Simulation Experiments
Our simulations are based on QualNet v3.9.5. We use 802.11a

with a fixed bit rate of 6 Mbps and free-space model of signal prop-
agation, which provides a communication range of 230 meters. The
interference range of 253 meters.

We generate traffic using both TCP and UDP and consider two
types of application demands:(i) saturated demands, in which
sources always have traffic to send; and(ii) random demands, in
which the demand of a source is picked randomly from a uniform
distribution between 0 and the maximum link load. We vary the
number of flows from 1 through 20 where each flow is between a
unique sender-receiver pair.

We consider two kinds of topologies in this paper: 5x5 grid
topologies and 25-node random topologies. Both occupy a 750x750
m2 area. We also study other network densities and find that the re-
sults are qualitatively similar. So we omit them from this paper in
the interest of brevity.

For each scenario, we conduct 10 random trials. In each trial,
flow sources and destinations are picked randomly. For random
traffic demands and random topologies, each trial also randomly
generates the demands and the topology.

We evaluate the performance with and without RTS/CTS. When
RTS/CTS is enabled, we set RTS threshold to 100 bytes so that
(small) TCP ACKs do not incur RTS/CTS overhead. In order for
TCP to be robust to high link loss rates, we use TCP NewReno and
set the MAC-level short and long retry counts to 16. This is the
largest maximum retry count allowed in madwifi-old driver, which
we use in our testbed.

Since several routing metrics (e.g., ETX [3] and MIC [35]) are
designed for wireless networks with lossy links, we extend the
QualNet simulator to generate directional inherent packetlosses.
In our evaluation, we randomly assign bit-error-rate (BER)of links
such that the data packet loss rates are uniformly distributed be-
tween 0 and 80%. As wireless link loss rates depend on frame
sizes, our evaluation considers both small and large frames. They
have respective application payload sizes of 106 bytes and 1024
bytes. The broadcast probes used to measure link quality forrout-
ing are also 106 bytes, as in [3].

6.3 Testbed Experiments
Our testbed consists of 19 nodes located inside an office building.

Each node runs Linux and is equipped with a NetGear WAG511
NIC. We run 802.11a with a fixed bit rate of 6 Mbps. We are not
aware of other 802.11a users in our building. We use the lowest
transmission power for our nodes to increase the network diame-
ter. In this setting, we measured the diameter to be 7 hops, though
routing paths may be longer. Other settings are consistent with the
simulations.

The routing protocols are implemented using click [2]. We use
nuttcp[24] to generate and measure UDP and TCP throughput. To
rate limit flows, we letnuttcp generate application traffic at the
specified limit. Without rate limit, each source generates appli-
cation traffic as per its demand. We experiment with 1-16 flows.

As is common [3, 4, 35], we measure link quality using broadcast
probes. Figure 8 shows CDF of link loss rate in our testbed. We
prune links exceeding 90% loss rates in our route selection.

7. MODEL VALIDATION
Below we show that our model is accurate in a range of settings.

Methodology A good interference model should closely approx-
imate achievable throughput given traffic demands as input,which
implies that: (i) the throughput estimate should be achievable in the
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Figure 8: CDF of link loss rate in our testbed.

network, i.e., the model should not over-predict throughput; and (ii)
the network should not be capable of delivering more throughput,
i.e., the model should not under-predict. It is straightforward to
evaluate for over-prediction – instantiate the estimated throughput
to the network and check if the actual throughput comes close.

Evaluating under-prediction is more tricky. We would like to
increase the load on the network beyond what the model estimates
and check how often that leads to higher network throughput.How-
ever, given multiple flows, there are numerous ways to increase net-
work load. Our experiments use a simple uniform scaling approach
that increases each flow throughput by the same factor. We usescal-
ing factors of 1.1, 1.2, and 1.5, which correspond to increasing load
by 10%, 20%, and 50%.

Figure 9 shows the format in which we present results in this
section. To evaluate under-prediction, the left graph shows a scatter
plot of actual and estimated throughput. The two lines on thescat-
ter plot correspond toy=x andy=0.8x. They help judge the accuracy
of the model visually. There will be no points abovey=x as the net-
work can never achieve more throughput than what is instantiated.
The points belowy=0.8x correspond to instances where the actual
throughput is less than 80% of what is predicted by our model.The
right graph is a CDF of the ratio of actual and estimated throughput,
before and after scaling. They-value of the point where a scaled
curve reachesx=1 represents the fraction of cases where our model
under-predicted by at least the scaling factor. The figures aggregate
results across all flow counts that we generate. These countsvary
between 1-20 in simulations and 1-16 in our testbed experiments.

In the experiments below, we use a data packet payload of 1024
bytes and use ETX to select routes. We find qualitatively similar
results for smaller payloads (not shown) and other routing schemes
(Section 9).

7.1 Simulation Experiments
Figure 9 shows the accuracy of predicting the throughput in a

grid topology with saturated UDP demands and without RTS/CTS.
We can see from the scatter plot that the vast majority of the points
lie between the lines, which implies that we over-predict network
throughput by more than 20% in very few cases. From the scale=1
CDF on the right, we can see that there are fewer than 15% such
cases. Meanwhile, the worst-case overestimate is under 50%. A
major cause for these over-predictions is that our model assumes
pairwise interference. The model over-predicts when neither two
senders interfere with a link alone but their total noise collectively
interferes with the link.

The scaled CDFs show that our model does not under-predict ei-
ther in this configuration. In almost all cases, the network is unable
to achieve demands that have been scaled by even 10%.

For the same configuration, Figure 10 shows the accuracy of the
CG-based model. Clearly, this model vastly over-predicts what the
network can achieve, because of the assumptions it makes about the
ability of the nodes to finely coordinate their transmissions. From
the CDFs, we can see the network achieves less than half of the
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Figure 9: Throughput prediction accuracy in simulation of our
model for grid topologies, saturated UDP traffic, and RTS/CTS
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Figure 10: Throughput prediction accuracy in simulation of
the CG-based model for grid topologies, saturated UDP de-
mands, and without RTS/CTS.

predicted throughput in half of the cases. Thus, modeling 802.11
DCF, as our model does, is key to accurate predictions of network
throughput. Interestingly, the inaccuracy of the CG-basedmodel
also hints at the performance cost of the CSMA-based 802.11 MAC
under heavy load.

Figure 11 shows that our model is robust across a wide range
of other simulated configurations. For TCP traffic, it overestimates
throughput by more than 20% in fewer than 20% of the cases. This
accuracy is less than that for UDP because TCP creates burstytraf-
fic and losses, which we do not currently model. However, as for
UDP, we never under-predict the network’s TCP throughput even
by 10%.

The remaining graphs in the figure show that the accuracy of our
model is high even when we switch from grid to random topologies,
or from saturated demands to randomly assigned demands, or from
not using RTS/CTS to using it.

7.2 Testbed Experiments
Figure 12 shows that our model is fairly accurate in the more

realistic testbed setting as well. For UDP, only in 10% of thecases
we over-predict throughput by more than 20%. For TCP, this over-
prediction occurs for 20% of the cases, which is similar to that in
simulation. The worst-case over-prediction is less than 40% for
both TCP and UDP. Meanwhile, as in simulation, our model does
not under-predict either. For both TCP and UDP, the network is
unable to achieve demands that have been scaled by even 10%.

Figure 13 shows the throughput prediction accuracy using CG-
model. We see that, as in simulation, the CG-model consistently
over-estimates the achievable rates. Almost all the pointsare out-
side the cone formed byy = x andy = 0.8x, which indicates that in
most cases its estimated demands are not achievable within 80%.

8. PERFORMANCE OPTIMIZATION
Can the accuracy of our model in predicting the throughout sup-

ported by the network be harnessed to improve performance, us-
ing the methods we outlined earlier? We answer this questionin
this section by first considering fairness maximization andthen
throughput maximization. We compare results with no rate lim-
iting, as it happens today, and with CG-based rate limiting.
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(a) Grid topology,saturated TCP demands, without RTS/CTS
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 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

A
ct

ua
l t

hr
ou

gh
pu

t (
M

bp
s)

Estimated throughput (Mbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

ns
 o

f r
un

s

Ratios between actual and estimated throughput

scale=1
scale=1.1
scale=1.2
scale=1.5
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Figure 11: Throughput prediction accuracy in simulation of
our model for various configurations. The difference from the
base configuration in Figure 9 is in bold.

8.1 Maximizing Fairness
Figure 14 shows the fairness index for TCP and UDP traffic in

our testbed. We see that the fairness index with our algorithm is
remarkably close to 1 for both kinds of traffic and across all of-
fered loads. Without rate limiting, fairness degrades quickly as
load increases. Even with the CG-based rate limiting, fairness is
substantially lower than with our rate limiting.

Figure 15 shows the fairness provided by our model-driven ap-
proach holds in a range of simulated configurations, for bothTCP
and UDP traffic, including grid and random topologies, with satu-
rated or random demand models, and with and without RTS/CTS.

8.2 Maximizing Total Throughput
We next consider the performance objective of maximizing total

throughput. Figure 16(a) shows that the benefits of rate limiting for
saturated UDP traffic in our testbed are significant. The graph on
the left plots the average total throughput, and the graph onthe right
plots the average normalized throughput (i.e., the throughput under
rate limit normalized by the throughput under no rate limit). In
terms of absolute throughput, UDP traffic experiences over 100%
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Figure 12: Throughput prediction accuracy of our model in our
testbed. RTS/CTS=OFF.
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Figure 13: Throughput prediction accuracy in our testbed us-
ing CG-model for saturated demands and RTS/CTS = OFF.

improvement; in terms of normalized throughput, the average im-
provement ranges from 100% to 2400%. The larger improvement
in the latter suggests that rate limiting is especially beneficial to the
flows that experience low throughput under no rate limiting.Like
our model, the CG-based model is able to identify interference-
related bottlenecks and impose rate limits. Therefore it helps boost
network throughput. However, because the CG-based model sig-
nificantly over-predicts throughput (Section 7), the loss rate in the
network is much higher and the throughput is consistently lower.
Figure 16(b) shows the benefit of rate limiting extends to random
UDP demands.

Figure 17 shows that the gain from rate limiting saturated and
random TCP flows is a more modest 10-50%. This lower im-
provement for TCP is expected given that we experiment with in-
finitely long flows that react well to congestion, thus minimizing
interference-related losses. However, we believe that rate limiting
will provide substantial benefits when TCP traffic is composed of
many short transfers, as is common for Web transactions, because
an aggregate of short TCP flows is significantly less responsive to
losses than long TCP flows.

Figure 18 shows the network throughput improvement for vari-
ous simulated configurations with UDP traffic. The error barsde-
note standard deviation. We see results consistent with thetestbed
across all configurations.

Figure 19 shows the effectiveness of rate limiting for TCP traffic
in simulated configurations with and without RTS/CTS. We see, as
with the testbed, the benefit of rate limiting tends to increase with
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Figure 14: Fairness comparison in testbed. RTS/CTS=OFF.
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Figure 15: Fairness improvement in simulation for difference
configurations. The aspect of a configuration that differs from
the first one is in bold.

more flows. Its benefit increases to 20-40% when the number of
flows reaches 20. In general, rate limiting helps TCP traffic less
than UDP traffic.

9. THE ROLE OF ROUTING
All the results above are based on routing paths chosen by the

ETX protocol. In this section, we show that, surprisingly, the choice
of the exact routing protocol makes little difference in ourexperi-
ments. We study three other protocols and find that all four behave
similarly. What seems to matter most is whether flows are being
rate-limited.

The three other protocols that we study are the following.

• HOPselects a path with minimum hop-count.

• MIC [35] scales ETX values of a link by multiplying it by the
sum of the neighbors of the two end points. It then selects a
path with the minimum scaled ETX value.

• CG selects the routes by casting the routing problem to a
maximum flow problem augmented with interference con-
straints derived by a conflict graph [14]. These routes are
close to optimal if nodes can finely coordinate transmissions.

We consider only the goal of maximizing throughput in this pa-
per, but we obtain similar results for maximizing fairness.

Figure 20 shows UDP and TCP performance under different rout-
ing schemes. The bottom four curves are the performance of differ-
ent routing schemes under no rate limiting, and the top four curves

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  2  4  6  8  10  12  14  16

T
hr

ou
gh

pu
t (

M
bp

s)

Num of Flows

wo/ RL
CG RL
Our RL

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16

T
hr

ou
gh

pu
t w

 R
L/

T
hr

ou
gh

pu
t n

o 
R

L

Num of Flows

CG RL
Our RL

(a) Saturated UDP demand

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  2  4  6  8  10  12  14  16

T
hr

ou
gh

pu
t (

M
bp

s)

Num of Flows

wo/ RL
CG RL
Our RL

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16

T
hr

ou
gh

pu
t w

 R
L/

T
hr

ou
gh

pu
t n

o 
R

L

Num of Flows

CG RL
Our RL

(b) Random UDP demand

Figure 16: UDP throughput improvement in our testbed with
rate limiting.
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Figure 17: TCP throughput improvement in our testbed with
rate limiting.

show the results using rate limiting based on our model, withthe
objective of maximizing total throughput. We see that the routing
schemes are almost indistinguishable. Rate-limiting doesmatter,
however. For each scheme, rate-limiting using our model provides
50-400% gain for UDP and 10-45% for TCP.

In Figure 21, we can see the same effect in other simulated con-
figurations. Routing does not seem to matter whether we have TCP
or UDP traffic, saturated or random demands, big or small pay-
loads. To rule out differences in probe packet size and payload
size, which may cause ETX to select the wrong path, we also con-
sidered probe-sized payload packets. As Figure 21(d) shows, that
does not make a significant difference either.

These routing protocols differ in how they account for interfer-
ence, but they all have their shortcomings on that front (seeour
previous work [20] for more details). For example, the ETX metric
is determined by packet loss rates at receivers, so it only captures
receiver-side interference but fails to capture sender-side interfer-
ence that stops nodes from transmitting. Moreover, the character-
istics of probing traffic and data traffic can be quite different in
terms of, for instance, volume, packet sizes and generationpattern,
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Figure 18: Throughput improvement in simulation with rate
limiting for UDP traffic for various configurations. The aspect
that differs from the first configuration is in bold.
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Figure 19: Throughput improvement in simulation with rate
limiting for saturated TCP demand and grid topology.
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Figure 20: Throughput in our testbed of the four routing meth-
ods with and without rate-limiting. The top four lines in each
graph are for the case of rate-limiting and the bottom four are
for non-rate-limiting.

which makes the two observe different loss rates. Therefore, the
ETX metric does not accurately predict the actual performance ex-
perienced by data traffic. The MIC metric is based on ETX, so it
has similar issues. The CG-based routing assumes perfect schedul-
ing and tends to select longer detours, which perform well under
perfect scheduling but not under 802.11.

What we show is that once we have properly managed inter-
ference through rate-limiting, the small variations in routing paths
produced by these protocols have relatively low impact on total net-
work throughput. We also repeat that our methods for rate-limiting
are agnostic to the choice of the underlying routing protocol. They
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Figure 21: Throughput in simulations of the four routing meth-
ods – HOP, ETX, MIC, and CG – with and without rate-
limiting. The top four lines in each graph are for the case
of rate-limiting and the bottom four are for non-rate-limit ing.
The aspect that differs from the first configuration is in bold.

can thus work with whichever routing method that provides better
performance in the given setting.

10. RELATED WORK
Our work builds on a large body of prior work that we broadly

classify into three categories: (i) interference modeling; (ii) rate
control and scheduling; and (iii) routing.

Interference modeling There is a rich body of work on model-
ing wireless interference. One class of works focuses on asymptotic
performance bounds. The seminal work by Gupta and Kumar an-
alyzed the capacity of a wireless network under certain traffic pat-
terns and topologies [13]. Other researchers have since extended
this work to other traffic patterns [19], mobility [12], and network
coding [11]. While these works lend useful insight into the perfor-
mance of wireless networks in the limit, their models are abstract
by necessity and cannot be used to model any specific real network.

The second class of works studies wireless performance for a
given network topology and traffic demands but does not modelthe
MAC and instead assumes that packet transmissions can be finely
scheduled across links [14]. As we show in Section 7, these models
significantly over-estimate the performance of 802.11 networks.

The third class of works model the performance of 802.11 DCF
MAC. Most models in this class target scenarios where every node
is within communication range of the others [1, 18, 8, 10] or where
traffic demands are restricted (e.g., a single flow [10, 8] or two
flows [30] or to a single neighbor [9]). In addition, all the above
models, except [30], assume binary interference. [31] is one of
the few that supports non-binary interference. But it requires de-
tailed measurement of the current network condition, such as chan-
nel busy probability and packet loss rates (including collision rate).
So it has limited prediction power – it can only estimate the effect of
introducing one new flow to the network. Two recent models [27,
16] are more general but even they target only one-hop demands
and are also too expensive to be used for optimization.



In contrast, we tackle the most general case of multi-hop topolo-
gies and end-to-end flows, but even so our model is lightweight
enough to be directly used for optimization.

Rate control and scheduling The importance of rate control and
scheduling has been well recognized. Some existing works [33, 21,
5] propose joint optimization of rate control and scheduling. Dif-
ferent from these works, our approach works with existing 802.11
MAC scheduling. IFRC enables fair rate control for sensor net-
works in which all nodes send traffic towards one or more sinks[29].
It is specific to the tree topologies and sensor network workload.
Our prior work shows preliminary evidence on the importanceof
rate limiting and the possibility of using conflict graphs for that
purpose [20]. In this paper, we develop a more accurate modelso
that we can perform predictable performance optimization.

Routing Most routing protocols for wireless networks follow a
least-cost-path model but differ in the methods for estimating link
cost. Some use hop count [26, 15], some use expected number of
transmissions (ETX) [3], while others use ETX scaled by factors
such as modulation or the number of neighbors [4, 35, 32]. These
sequence of metrics are motivated by improving the performance of
routing. We show, however, that rate-limiting flows is key topre-
dictable and high performance – severe performance degradation
can occur in its absence – and the differences in routing metrics
appear to matter less.

11. CONCLUSION
Our work demonstrates the feasibility of predictable performance

optimization for wireless networks, thus making the task ofman-
aging and optimizing them as predictable as that for wired net-
works. The foundation of our approach is a new model that cap-
tures interference, traffic, and MAC-induced dependenciesin the
network using only a small set of constraints. Our model is realis-
tic enough to handle real-world complexities such as hiddentermi-
nals, non-uniform demands, and non-binary interference, and yet it
is lightweight enough to drive network optimization.

Evaluations of our methodology using a testbed and simulations
showed that it is very effective. Across a range of topology and
traffic configurations, it was able to accurately approximate the
throughput that the network yielded. It rarely under-predicted, and
for 80% of the cases, it estimated within 20% of the actual through-
put. When maximizing fairness using our methods, we achieved
close to perfect fairness amongst flows for both UDP and TCP traf-
fic. When maximizing throughput, we found that our methods can
improve network throughput by 100-200% for UDP-based traffic
and 10-50% for TCP-based traffic.

In the future, we plan to address several practical issues inorder
to apply the approach to operational wireless networks. First, we
plan to develop novel measurement techniques to passively and ac-
curately estimate interference and seed our model. Second,we plan
to evaluate our approach under realistic traffic demands that change
with time. Third, we plan to improve the efficiency of disseminat-
ing the inputs to our algorithms by adapting the update frequency
based on the rate of change and applying delta encoding.
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