Predictable Performance Optimization for
Wireless Networks

YiLi*  Lili Qiux  Yin Zhang*

University of Texas at Austin*

{ylee,lili,yzhang,erozner}@cs.utexas.edu

ABSTRACT

We present a novel approach to optimize the performancekit |E
802.11-based multi-hop wireless networks. A unique featfr
our approach is that it enables an accurate prediction afethat-
ing throughput of individual flows. At its heart lies a simplet
realistic model of the network that captures interferertcafic,
and MAC-induced dependencies. Unless properly accoumted f
these dependencies lead to unpredictable behaviors. §ante,
we show that even a simple network of two links with one flow
is vulnerable to severe performance degradation. We dedign
rithms that build on this model to optimize the network farrfi@ss
and throughput. Given traffic demands as input, these &lhgyosi
compute rates at which individual flows must send to meet khe o
jective. Evaluation using a multi-hop wireless testbed ad as
simulations show that our approach is very effective. Whetir o
mizing for fairness, our methods result in close to perfaghgss.
When optimizing for throughput, they lead to 100-200% invero
ment for UDP traffic and 10-50% for TCP traffic.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design-Wireless communicatiorC.4 [Performance
of System$: [Modeling techniques]

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords

Multi-hop wireless networks, Modeling, Optimization, énference

1. INTRODUCTION

Wireless networks are becoming increasingly ubiquitouthé
form of WLANS, city-wide meshes, and sensor networks. But ex
tracting predictable performance from these networksytéslao-
toriously hard. A single new flow can lead to a disproportiena
decline in network performance. Attempts to increase ngtyper-
formance, for instance by adding relay nodes to shortendisk
tances, can end up reducing performance. This is in shatpasbn
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to wireline network management, where network operatovg ha
many effective techniques to predict and improve perfogean

We seek to develop optimization techniques for wireless net
works that enable a prediction of the resulting performaatcine
level of individual flows. As motivating examples, considleree
basic capabilities that are not available today, and to ook
edge, cannot even be approximated easily for real netwdrikst,
network operators should be able to predict if the networksgp-
port the current or a planned traffic demand. Second, thaydhe
able to perform “what if” analysis to predict the impact ohfig-
uration changes such as addition of new flows or routing oemng
Finally, they should be able to predict safe sending ratesigbus
flows based on policy and path capacity.

We show in the body of the paper that the final capability above
is especially important for good performance. Without appiate
rate-limiting, network throughput can decline sharply wlilows
send more than what the path can support. This degradatiobeca
severe even in a simple setting of a single flow traversinditvks.
End-to-end congestion contras,g, using TCP, while helpful, is
not sufficient to prevent this pathological behavior.

In this paper, we propose a novel model-driven approachdior o
mizing wireless networks. We focus on static, 802.11-baseti-
hop networks, though we believe that the general methoglakng
applicable to other scenarios. The cornerstone of our apprés
a new model that captures the complex interference, trafid,
MAC-induced dependencies in the network. These depeneenci
are the underlying cause of unpredictable behavior. Cegttinem
accurately and in a way that subsequently allows for optition
is the fundamental challenge in fulfilling our goal.

Despite much work on interference and MAC modeling, none of
the existing models for multi-hop networks fulfills our neéddany
existing models make simplifying assumptions about sigmnap-
agation[[13], traffic/[10, 30, 8, 27], topology [1, 18, 8, 10},the
MAC layer [14]. These assumptions often do not hold for redi n
works [17]. Many models also have high complexity and may re-
quire an exponential number of constraints [14] or stat@k [2

Our model strikes a balance between simplicity and realBased
on easily collected measurements from the network itdethar-
acterizes the set of feasible network configurations arfticttas-
signments using very few constraints. Giverinks that are ac-
tively sending traffic, our model he@(nz) complexity and only
O(n) constraints. Despite its simplicity, our model can handkd+
world complexities such as hidden terminals, non-uniforaffic,
multi-hop flows, and non-binary interference.

We then develop optimization algorithms that compute liatés
for flows according to the specified performance objectivieese
algorithms take flow demands as input and use our model asa bas
building block. The two performance objectives that we @bes



in this paper are maximizing fairness and maximizing toéork
throughput. To our knowledge, such goal-driven and preojite
mization for multi-hop wireless networks was not possiteéobe.

Evaluation using a multi-hop wireless testbed and simorfedix-
periments shows that our approach is highly effective. Asra
range of topology and traffic configurations, it is able touxately
approximate the throughput that the network yields. Itlsemader-
predicts, and for 80% of the cases, its estimate is within 20¢he
actual throughput. When maximizing fairness using our wdsh
we achieve close to perfect fairness amongst flows for bot UD
and TCP traffic. When maximizing throughput, we find that our
methods can improve network throughput by 100-200% for UDP-
based traffic and 10-50% for TCP-based traffic. Interestinge
also find in our experiments that the exact choice of routimagg
col is not important for good performance; what matterseadtis
that flows be rate-limited per the desired performance goal.

In summary, our work to predictably optimize wireless netwo
makes the following contributions.

e It shows that rate-limiting flows to levels that the netwoakc
safely support is critical for good performance; otherwise
network throughput can sharply degrade even in very simple
settings (Section 2).

We develop a novel approach to optimize multi-hop wireless
networks (Section|3). Our approach includes a simple yet re-
alistic model of network throughput under interferenced an
MAC-induced dependencies (Section 4). We design algo-
rithms that use this model to optimize for fairness amongst
flows and for throughput (Section 5).

We evaluate our approach using extensive testbed and sim-
ulation based experiments (Sections [6-9). The evaluation
shows that it can accurately predict network throughptiexe
close to perfect fairness, and substantially improve neéwo
throughput.

MOTIVATION

The goal of our work is to enable systematic optimization of
multi-hop wireless networks, whose resulting performacee be
predicted at the level of individual flows. We motivate thizag
using examples of abilities that an operator may want bus dog
have today. These abilities are all pretty basic when it coie
managing networks and are available in wired networks today
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1. Determine whether the current or a planned traffic matix ¢
be supported by the network. This is an essential capability
for network planning as it tells the operators when to add
more resources.g, additional radios on orthogonal chan-
nels or directional antennae to reduce interference.

. Perform “what if” analysis on various configuration chasg
to judge the impact of a change on the network. Such an anal-
ysis should be able to answer questions such as the following
What if a new flow is added between two nodes? What if a
particular link or node is removed from the network? What
if a particular routing change is implemented?

. Compute and cap the sending rate of individual flows based
on network polices and path capacity. This again is espe-
cially important in wireless networks. A flow that sends more
impacts not only those flows that it shares links with (as is
the case in wired networks), but also many other flows in the
vicinity due to interference. More importantly, as we show
below, a flow that sends more than what the path supports
can cause a sharp decline in throughput. This decline is rem-
iniscent of congestion collapse in wired networks.

As we discuss later, our optimization strategy relies on mam
ing flow rates such that the specified performance objediivesit.
Here, we show that limiting flow rates is essential to obtairgood
performance from the network. Without it, severe perforogan
degradation can occur.

UDP traffic  We illustrate this point using the two simple topolo-
gies in Figure 1(a). Both have one reliable (“good”) link amk
lossy (“bad”) link but the order of the two links is differertising
QualNet [28], we simulated the case ®kending 512-byte UDP
packets taD as fast as possible. Unless otherwise specified, our
experiments use 802.11a and 6 Mbps MAC bhit rate throughaut th
paper.

Figure 1(b) shows that the throughput of the two topologiea a
function of loss rate on the bad link are very different. Absd rate
of 0.5, the throughput of the good-bad topology is less thahdf
the bad-good topology.

The reason for this disparity is the following. For a sucbdss
reception in the good-bad topologyneeds to transmit a packet to
R only once, buR has to transmit t® more than once. Since the
802.11 MAC allocates the medium fairly amo8gndR under sat-
urated demands, the incoming traffidRis more than the outgoing
traffic, and many packets sent Byare eventually dropped &due
to queue overflow. These wasted transmissionS admpete with
those fromR and reduce the throughput of the good-bad topology.
Such wastage does not exist in the bad-good topology bedause
can send all incoming traffic.

This problem cannot be solved by RTS/CTS because both trans-
mitters can hear each other and there is no hidden terminade-M
over, simply changing the MAC allocation policy will not fike
problem in the general case because the bottleneck can lipleul
hops away from the source.

The wastage in the good-bad topology leads to a sharp decline
in throughput as the sending rate is increased. Figure Iqty the
throughput of the two topologies &ncreases its sending rate. The
loss rate is configured to 0.5. In the good-bad topology.eiasing
the sending rate beyond a threshold sharply degrades tipatig
This threshold represents the sending rat8 afwhichR can relay
all received packets. Beyond R,cannot keep up as the medium is
increasingly occupied by the transmissions frBhat are eventu-
ally dropped. The throughput stabilizes when the mediurgeisd
R decreases to half.

The graph also shows that the two topologies have the same max
imum capacity, but in the good-bad case, it can be achievisdfon
we limit Sto the threshold sending rate. However, none of the cur-
rent routing protocols give rate feedback. Moreover theynca
even distinguish between these two paths. The path qualityea-
sured by current protocols will be the same for both top@sgi

This sharp decline in throughput is reminiscent of congesti
collapse in the Internet. But it is unique in that it is caubgda
single flow over a very simple topology. Known examples of-con
gestion collapse in wired networks [6] involve more comptex-
figurations. A key difference is that the capacity of the leoick
link in a wired network is not impacted by other links, but iirey
less networks interference reduces bottleneck capacignwither
links are active.

Figurel 2 confirms that this pathology can be replicated in the
more realistic testbed setting as well. We emulate diffeless
rates in the testbed by changing the distance between thHamesc
and varying layers of foil around the wireless cards. FidR(®
shows that the two topologies perform differently wigsends as
fast as possible. Figure 2(b) shows the sudden throughplinee
in the good-bad topology when the bad link has roughly 50%.los
Thex-axis in this graph denotes the fraction of the fastest ptessi
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Figure 1: The importance of rate feedback. (a) Two topologies that differ in where the lossy link occurs. (b) Throughput as a
function of loss rate whenSsends as fast as possibléc) Throughput as a function of the sending rate when the loss ra of the bad

link is 0.5.
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Figure 2: Testbed experiments confirm the importance of rate
control. (a) Throughput vs. loss rate in the two topologies(b)
Throughput vs. sending rate in the good-bad topology when
the loss rate on the bad link is 0.5.
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Figure 3: The topology for the TCP example.

sending rate. When the sending rate factor is 1, the sourmsse
packets back-to-back. The curve is not as smooth becausesthe
rate in the testbed cannot be precisely controlled. Ovetradise
results confirm the ill-effects of not controlling sendirages.

TCP traffic Similar problems occur with TCP as well be-
cause TCP’s built-in rate control and congestion responseat
well-suited for the wireless environment. Consider a sipology
shown in Figuré B, where all links are reliable. There are ¢tom-
peting TCP flows - 5 and 2— 4. We find performance degra-
dation due to overload when the central node cannot relahall
traffic sent by its neighbors. With 1024-byte packets, indbe
sence of additional rate limiting, the two flows get 0.805 Iglbp
and 0.740 Mbps, respectively. In comparison, if we limitithe
application-layer sending rates using our optimizatianfework
(see Sectioh 5) and constrain the burstiness of TCP by figiti

3. APPROACH

The previous section showed that dependencies introdycied b
terference and MAC can lead to significant performance probl
in wireless networks. Thus, any optimization strategy nesable
to model and predict these effects. We develop a model+uioge
timization approach. We focus on IEEE 802.11-based netsyork
though our framework would be useful for other MAC protocads
well, which we plan to investigate in the future.

We need a model with the following two properties. First, it
provides an accurate and compact characterization of #sbie
solution space, which can then be incorporated in an opditioiz
procedure to find a high-performance configurations. Seciind
strikes a balance between fidelity, generality, and tradighbvhich
is crucial for optimization to be effective and efficient.

We develop a novel model that satisfies both requirements. It
has low complexity. Givem links that are actively sending traffic,
our model hagD(n?) complexity. It consists oD(n) constraints
that capture the inter-dependency between throughputsrtris-
sion probabilities, and packet loss rates of differentdinkhese
constraints collectively characterize the set of netwarkfigura-
tions and traffic assignments that can be achieved in 802%1 n
works. In contrast, many existing models are complex and reay
quire an exponential number of state variables [27] or caimgs [14]
in the worst case. Despite its simplicity, our model is gahand
realistic. It is based on easily collected measurements fitze
underlying network and is thus more accurate than abstradt m
els of RF propagation such as those based on distance. It also
deals with real-world complexities such as hidden ternsinabn-
uniform traffic, multi-hop flows, and non-binary interfecen In
contrast, existing interference models often impose intis& as-
sumptions about signal propagation [13], traffic [10] 3028],
topology [1, 18, 8, 10], or the MAC layer [14]. These assuiommi
rarely hold for real networks [17].

Our model can be used in several ways for wireless network op-
timization. First, it can be used to answer “what-if” quess, such
as testing whether desired end-to-end throughput can hevach
(see Section 5/1). It can also predict the performance wtitfer-
ent network configurations, such as the impact of enablingjser
abling RTS/CTS. Second, in conjunction with an efficientrelea
mechanism, the model can be directly applied to optimizéager

the TCP sender buffer to 2 packets, the two flows get 1.066 Mbps performance objectives when there are only a small numbeorof

and 1.064 Mbps, respectively, which translates to 37.9%ease
in total throughput. With 512-byte packets, rate limitiresults

in 20.8% increase in total throughput. This example dermates
that TCP is unable to appropriately set its rate to whereritmax-

imize throughput. This is likely because TCP’s aggressiaedb

width probing makes the flows stabilize at a loss rate highant
the loss rate under maximum throughput [7].

trol parameters. This is the case for fair rate allocatiohictv has
a single optimization parameter (see Section 5.2). Thivel,con-
straints of our model can be linearized and incorporated &mt
optimization procedure. This is the case for network thhmug
maximization, which has many parameters (see Section 5.3).



Expected payload transmission time for Link

Regular slot time

DATA duration on Linki from source to destination)

T;2%| ACK duration on Linki from destination to source)

Inherent DATA loss rate on Linkfrom source to destination)
Inherent ACK loss rate on Linkfrom destination to source)
Probability for Linki’s source to carrier sense Lirjks source

Dij“ Probability for Linki’s source to carrier sense Lirjks destination
S; | Synchronous collision loss probability for Lirikdue to Linkj's transmission
Ajj | Asynchronous collision loss exponent for Lindue to Link j's transmissior
W; | Expected waiting time for Link when Link j # i is transmitting.W; is the|
expected time for Link to complete a transmission.

7, | Probability for Linki to transmit in a random variable-length slot (VLS)

pi | Total packet loss rate on Link

Ui | Expected VLS duration of Link

g | Throughput of Linki

6 | Probability for Linki to start sending at a random slot time

Table 1: Model constants (upper case) and variables.

4. OUR MODEL

In this section, we develop a model for IEEE 802.11 that can
be used for model-driven optimization. We describe our rhode
terms of network “links.” Links are unidirectional, and &alink
has a unique source-destination pair of nodes.

4.1 Basic Model of 802.11 DCF

loss rate, and VLS duration of different links. We describese
constraints below. Table 1 summarizes the notations, whane
stants are in upper case and variables are in lower case.stlioeen
consistency, we use slot tinig,o; as the common unit for the cal-
culation of time in our model.

Throughput constraint  The throughput constraint relates through-
put to transmission probability, packet loss rate, and Vuftion.

Let 7; be the probability for Linki to start a packet transmission
during a VLS. Letp; be the loss probability for such a packet trans-
mission. Lety; be the expected duration of a VLS at LinkLet

ER be the expected payload transmission time at LLinkhen, the
throughput for Linki, denoted byg;, is simply the fraction of time
that it spends on successful payload transmissions:

_ ERxTix(1-p)

g Hi

@)

VLS duration constraint The VLS duration constraint relates
the expected VLS duratiog; to transmission probability;:
Hi = Tsiot+ z [(W] —Tslot) X Tj] (2

]

whereW; (j # i) is the expected amount of time for Limko wait

We first develop a basic model of 802.11 DCF for the base case in due to carrier-sense for Linkto complete a transmission, aW is

which all flows are one-hop UDP flows and RTS/CTS is disabled.
We then extend the model to support RTS/CTS, multi-hop flows,
and different transport protocols in Section 4.2.

4.1.1 Assumptions
Our model makes two key assumptions:

Al. It assumes pairwise interferenéss., the interference rela-
tionship between two links is independent of activities on
other links. Previous works show that pairwise interfeeenc
is good approximation in real networks [25, 23].

It assumes that different types of lossy, collision loss and
inherent wireless medium loss) are independent.

A2,

the expected amount of time for Linko complete a transmission.
We estimatelf; andWj as follows. Lethjjat be the inherent

DATA loss rate on Linkj. Let D¢ andDgStbe the probabilities for
Link i to carrier sense Link's source and destination, respectively.
Let T92t be the expected duration of DATA transmission on Link
j, which consists of a DIFS duration, a MAC preamble duration,
the transmission time for the payload and packet headets A%
be the expected duration of ACK transmission on Linkwvhich
consists of a SIFS duration, a MAC preamble duration, and the
transmission time for an ACK. We then estimiég andWj; as:

W =
W

Disjrc > Tjdat+ Didjst % Tjack % (1 _ L(jjat)

-|-idat+ Tiack > (17 ijat)

While these assumptions do not always hold in practice, they

are a reasonable approximation to the reality. Under thesenap-
tions, we do not need to model intricate interactions amaffigrel
ent links,e.g, links A andB interfere only when link€ andD are
active. As a result, our model becomes significantly simgalifi—
it hasO(n?) complexity and onlyO(n) constraints, whera is the
number of active links. In Section 7, we use simulations astbed
experiments to show that our model is quite accurate depse
simplifications.

4.1.2 Constraints

Following Bianchi’s approach [1], we divide time int@riable-
length slots (VLSfor each link.

o When the link senses a clear channel and either has no data t

We have made two simplifications above. We ignore the effect
of collision loss on VLS duration and use only the inherenfTBA
loss ratd_9atto estimate the probability for a DATA transmission to
succeed. This simplification turki$; andWwj into constants instead
of variables at the expense of slightly overestimating tteeted
VLS duration. We also ignore the effect of NAV oiij, i.e., we
assume that Linkwaits for Link j’s ACK only if it is transmitted.

In reality, if Link i successfully receives LinKs DATA, it would
wait even if no ACK is transmitted because of the NAV value em-
bedded in Linkj's DATA. The latter simplification may result in
slight underestimation of the expected VLS duration, batdfiect

is small because ACK is typically much shorter than DATA.

4-0ss rate constraint The loss rate constraint relates packet

send or its backoff counter has not yet reached 0, the current 0SS rate to transmission probability. To compute packss fate

VLS lasts for a regular slot tim&qt.

pi, we model both inherent medium loss and collision loss.dvoll
ing [27], we further distinguish between two types of cadlisloss:

e When the link senses a clear channel, has data to send, andj) synchronous loss that occurs when the two senders caiercar

its backoff counter is 0, it sends a packet and the current VLS
lasts for the entire packet transmission.

e When the link senses a busy channel, the current VLS lasts

until the channel is clear for a DIFS duration.

Our model consists of four types of constraints that captiuee
inter-dependency between throughput, transmission pitityapacket

sense each other; and (ii) asynchronous loss that occuns athe
least one sender cannot carrier sense the other.

Assuming independence among different types of loss cdused
different links, the packet success probability of Link

1-p

(1172 x (1- L8 x [ [(1—e?jy“°) x (1— 2 ]
I



whereL%tandLa are the inherent loss rate of DATA and ACK on
Link i; £¥"and (" are synchronous and asynchronous collision
loss on Linki caused by Linkj, which can be modeled as follows.

e The synchronous collision loss rate is give ‘=5j1;,
wherertj captures the probability for Linkto start transmit-
ting at the same time as LirikandS;j is the probability for
a packet on Link to get lost due to collision with a packet
on Link j conditioned on the fact that the two packet trans-
missions start at the same time. Note that a packet is lost
when either its DATA or ACK is lost. S&j combines the
conditional loss rates of DATA and ACK.

The asynchronous collision loss rate is given€§§>’“: 1—
1- Qj)A"i, where 6 £ L—’J is the probability for Linkj to
start transmitting at a random time instant. It is obtaingd b

normalizingt; by the expected VLS duration;. Ajj is the
asynchronous collision loss exponent defined as

A [T
Aij = - Gij (x)dx,

whereT), is the maximum duration of a packet transmission,
Gij (x) is the conditional probability for a packet on Linko
get lost due to collision with a packet on Liikvhen the start
times of the two packet transmissions differ by offsethus,
Cij(0) = Sj. To understand the intuition behind the defini-
tion of Ajj, imagine that we divide time into bins of fixed
width Ax. For a given time bin at offse¢ the probability for
Link j to start a transmission in it 8 Ax. Similar to the anal-
ysis of synchronous collision loss, the probability for kin
j’'s packet to cause collision loss in Lik packet at offsex

is given byCijj (x) 8jAx. The probability for Linki's packet to
succeed despite collision with Links packet can therefore
be approximated as-1Gjj(X)0jAx ~ (1 — ;)G 05X As-
suming independent collision loss for different offsetss t
total asynchronous collision loss probability for Linkcan
therefore be approximated by

1— (1-6; )G — 1 _ (1 6, )zxe[—T“.Tp]CiJO()AX
XE[=Ty, Tyl

i /™% Cij(dx ’
whose limitbecomes 1 (1—6;)’ - 1™ =1 (1— ;)i
asAx tends to 0.

Putting it all together, we can model packet loss ftas a func-
tion of transmission probability; and8; = L—’I

po=1— (1L x (1 L2%)x

Eﬁ[[(l—SjTj)X(l—Qj)’*"
A

®)

Feasibility constraint ~ With 802.11 DCF, the transmission prob-
ability 7; is feasible if and only if it is bounded by a function of the
packet loss rat@;. Specifically, we have [1, 27]

< — 4

"= 24CW(p)’ @
whereCW(pi) = CWhin + pi x (14 CWhin) x 35 (2pi)¥ is the
expected contention window size under packet loss pat@Wn;,

is the minimum contention window size in slots. For 802.11a,

CWhin=15,M = log, <C"““ax+1), andCWhax=1023.

CWhin+1

4.2 Extensions to the Basic Model

We now extend the basic model above to support RTS/CTS,-multi
hop flows, and TCP traffic. In the interest of space, we onlggmé
the key ideas.

RTS/CTS  To support RTS/CTS, we make two modifications.
First, in the VLS constraint (EQJ2), constaitg andW; are up-
dated to account for the additional delay introduced by Ri& a
CTS. Second, the loss rate constraint (Eq. 3) is extendetttw-i
porate the inherent RTS and CTS loss raté,and L', and the
additional collision losses involving RTS and CTS.

Multi-hop flows Given routing information, we can convert
multi-hop UDP flows into one-hop UDP flows. Specifically,xet
(Xd)mx1 be the vector of end-to-end flow rates. IRt [Rg|nxm
be then x mrouting matrix, wheréq is the fraction of Flowd that
traverses Link. Letg = (gi)nx1 be the vector of link loads. Then,
we have

g=R-X 5)

Note that the conversion above applies only when the erefitb-
flow rates ardeasible If the end-to-end flow rates are infeasible, a
multi-hop flow may result in more traffic on hops near the arjgi
which cannot be carried forward by the subsequent hopsriBest
ing to only feasible flow rates is not a problem for model-énv
optimization because we only need to consider feasible faie r
assignments.

TCP traffic Finally, when TCP is used as the transport layer
protocol, we also need to take into account the TCP acknawled
ment traffic. To convert multi-hop TCP demands into one-tiip |
demands, we replace the routing mafiin Eq./5 with a new rout-
ing matrix Rrcp that combines the forward and reverse direction
of TCP connections. Specifically, IB,q andRrey be the routing
matrix for the forward and reverse direction of TCP conret|
respectively. We define

Rrcp = Riwd + @ X Rrev, (6)

where the coefficientr reflects the size and frequency of TCP ac-
knowledgments. Assuming that TCP acknowledgments contin
payload, without TCP delayed acknowledgments, we simply se
a = pp, WhereH is the total size of IP and TCP headers, and
EP is the expected payload size. With TCP delayed acknowledg-
ments enabled, we sat=0.5x gHep.

4.3 Model Initialization

To apply our model, we need to initialize the constants in Ta-
ble[1. The key constant are: (i) inherent loss rdté& 1 ack | Its
andL{*s, (ii) carrier sense probabilitieB and DidjSt; and (iii) col-
lision loss parameter3; andA;j. For simplicity, we estimate these
parameters by conducting pairwise broadcast measurerfi&jis
but our model can just as easily use the inputs inferred byemor
scalable approaches [27].

1. Wefirstlet one Noda send alone. All the other nodes record
the receiving rates from. Dividing the receiving rates by
a’s sending rate yields the inherent loss rates for all links
from a. ACK, RTS, and CTS are smaller than the smallest
UDP packets. We approximate their inherent loss rate by
broadcasting UDP packets with 1-byte payload.

. We next have two nodes andb send simultaneously. By
comparinga’s sending rates when both andb are send-
ing, we can estimate the probability farto carrier senseé.
Specifically, we can show thats broadcast packet sending



rate wherb is transmitting is given by
Ta
Tstot+ (Ta— Tsiot) X Ta+ (To — Tsiot) X T X Dap’

wherers = Ty = »—&r—

— for saturated broadcast traffiDgp
is the probability fora {o carrier sensé, T, and Ty are the
packet transmission times including preamble and header. S
we can easily compute the single unknolg, based on the
measured sending rate af

3. Toestimat&j andAjj, we evaluate the conditional loss prob-
ability Gjj (x) for different offsetsx between the start times of
the two packet transmissions on Linkand j. Based on
carrier sense probabilities, we estimate the probabitityaf
broadcast transmission on Linko overlap with a broadcast
transmission on Linkj. We denote this overlapping proba-
bility by Oib-ca'Stand compute it by applying the two-sender
broadcast model of [27]. We denote the conditional loss
probability for Link i when transmissions on the two links

2.| for iter = 1to MaxIter
gi i

3| b= 1=Ll2..n

4. (Ti) = estimate_tau_from_theta((8))

5. (pi) = compute_packet_loss_rates((T;),(6)) Il according to Ed. 3

6. ifanyiwhose (1; > ac#va,) )

7. feasible= 0; break /I early stop: infeasible

8. end if

/ 1j x(1-pj ) xER

9 9= Tslot 2 j [(Wj —Tslot) X Tj]
10 if (max{|gi—gi|} <TOL) // convergence test (T Ok 0.01 by default)
11, feasible= 1; break /I early stop: feasible
12, end if
13| end for

14, return feasible

overlap byoﬁcasF It is computed based on
RI!;}cast: ( 1- L!acast) % ( 1- o!;}cast>< Cﬁca55

Above, LPeastis the inherent loss rate on LirikandRPcastis
the broadcast receive rate for Linlwhen both links are send-

. . g . . 6. if (scale>1—¢) Il € = 107* by default
ing. Finally, we computé:” (x) by Combm":]g Phe collision 7. x = z; break /1 all unsaturated demands can be satisfied
loss rate for all steps of a packet transmissiog, DATA, 8| endif
ACK, and if applicable, RTS, CTS. 9.  foreachd e unsatSet
10, Y=2Ya=(1+¢) x Yy
11, feasible= test_link_throughput_feasibility(Ry)
_ 12, if (not feasiblg
S. MODEL DRIVEN OPTIMIZATION ) 13, Xd = Zg; unsatSet= unsatSet- {d} // d has become saturated
In this section, we apply our model to optimize wireless per- 14. end if
formance. Our overall optimization strategy is to compgads ig e dev’\‘,ﬂ”fgr

ing rates for all flows based on their demands, the networkltop
ogy, and the optimization objective. We first describe aw@iigm
to test whether a given flow rate assignment is achievable®m S
tion[5.1. We then consider maximizing fairness in Sedtiéhahd
maximizing total throughput in Section 5.3.

5.1 Flow Throughput Feasibility Testing

Our goal is to test whether a given set of link throughgis
is achievable. The main challenge is that there is strongr-int
dependency between the transmission probability and geerkie
of different links. The transmission probability of a Limkr;, de-
pends on the transmission probability of the other linksictwtin

turn depends on;. To address the inter-dependency, we use an

iterative procedure to jointly estimate the transmissioobpbili-
ties and loss rates. We initialize the collision loss anddnaission
probabilities at all links to be 0. We then iteratively upsldink
transmission probabilities and loss rates based on the bitks’
transmission probabilities and loss rates derived in tlegipus it-
eration. Figure 4 outlines the algorithm.
To estimate(t;) given (6) (Line 4 in Figure 4), we note that

6=7= m Therefore, we can estimatg) by

solving the following system of linear equations
{Tslot+z [(VV” —Tslot) X Tj]} x6 =1, i=L2...n (7)
]

The iterative procedure continues until the number of fiens
reaches athreshold, or the throughput values no longegetsig-
nificantly, or a feasibility constraint (Eq! 4) is violatede bound
the number of iterations to twenty, which works well in ouper
iments.

17, return x = (Xg)

> Input: a vector of link throughputgi); > Output: whetheg;) is feasible
|| initialization : feasible=0,7,=0,p=0(=1,2,...,n)
/I iterative model evaluation (MaxIter 20 by default)

=

Figure 4: Link throughput feasibility testing.

> Input: routing matrixR = [Rg]nxm, end-to-end demand = (x}) (d € [1,m])

> Output: weighted max-min fair rate allocation:= (x4)

1| initialization : unsatSet= {1,...,m}, x4 =0

2.| while (unsatSet~ 0)

/1 try to scale up the unsaturated demand®as much as possible
wsat_ | % if d € unsatSet

8. %= 0 otherwise (d=

/l find largest scale [0, 1] for R(x + scalex xU"s3) to remain feasible

4. scale= get_max_scaling_factor(Rx""S3 Rx)

5. z =X+ scalex xunsat

/I find the set of demands that become saturated

Figure 5: Algorithm for fair rate allocation

5.2 Fair Rate Allocation

Given the feasibility test for link throughputs, we use iedzasic
block for achieving weighted max-min fair rate allocatiofhis
allocation takes routing and traffic demand matrices astinpu

Figure[5 outlines the algorithm, which is effectively based
iterative water-filling. Letx* = (xj) be the end-to-end demand.
Let R = [Rig]nxm be the routing matrix, wher&q is the frac-
tion of Flow d that traverses Link. The vector of link loads is
given byR-x. Initially, the algorithm marks all demands as un-
saturated. In each iteration, the algorithm tries to scplaluthe
unsaturated demands as much as possible until at least sag un
urated flow is saturated,e., it cannot be scaled up further with-
out violating a feasibility constraint. The maximum scglifac-
tor scalee [0,1] is found efficiently through bisection search in
the subroutinget_max_scaling_factor(g"s g5&) (Line 4 in Fig-
ure[5). The iteration continues to scale up the remaininguns
rated demands until all demands are saturated.

5.3 Total Throughput Maximization

We optimize the network for maximum total throughput by for-
mulating a non-linear optimization problem. This problersalved
by linearizing the non-linear constraints and solving @eseof lin-
ear programs.

As before, letx* = (xj) be the end-to-end demand aRt=
[Rid]nxm be the routing matrix. LeR; be thei-th row vector of
R. The problem of maximizing total end-to-end throughput ban



P

1| initialization: X =0, 7% =0, for vdvi

2.| for k=1to KMAX

3. letx°Pt and °Pt be the optimal solution to the linear program ().P
4. x(K) = xopt

5. repeat // ensure solution feasibility

6. x®) = xk=D) g x (x0 —x(k-1)

7. feasible= test_link_throughput_feasibility(Rx*))
8. until (feasible= true)

9. x® =0.99x x®

0.| end for

1. return x

Figure 6: Algorithm for maximizing total throughput.

cast into the following non-linear optimization problemL(R).

maximize (Zxd
Rx<F(r) Vi
. Gi(T)<0 Vi
subject to ! N NLP
O<xg<xg vd (NLP)
0<T1i<1 Vi
ERxTix(1—p;
whereF; (1) = W}ETQ‘;;”] andG;(T) = Tj — 5—=2. There-

2+CW(pi) *
fore, constraint& x < (1) encode the linear relationship between
end-to-end throughputand link throughput; constrain@; (1) <0
encode the feasibility constraint (Ed. 4).

We solve the NLP above through iterative linear programming
as shown in Figure 6. In each iteration, we linearize the non-
linear constraints in the NLP using their first-order apfmation.
Specifically, leixk~1) andt(k=1 be the estimate ofandr in itera-
tion (k—1). LetF*(1) andG{ (1) be the first-order approximations
of F (1) andG;i (1), respectivelyF*(1) andG; (1) are then:

O Rrten)

RO=RED 30 -5 ®
_ 7]
GI(M =Gt )+ 3 (51 ) x Fre ) @

J

In the interest of brevity, we omit the details on how to cotepall
the partial derivatives above.

SubstitutingF (1) andG(t) with F*(7) andG*(T) in (NLP), we
obtain the following linear program:

maximize erd
Rx<F*(t) Vi

subject to gl<(21 §<?<3 :Id (LPy)
0<T[ <1 Vi

We then derivec® andt® by solving the linear program (L
The optimal solution to (LR, however, cannot be directly used be-
cause the LP is only an approximation to the original NLP. fighe
sulting solution may not satisfy the constraints in the ioagNLP.

To ensurex(¥) satisfies NLP, we apply a simple line search to find
a point on the line betweextk—Y andx() that is feasible. Dur-
ing the line search, the distance betwe#fl andx(x~1) shrinks
exponentially fast. Since we guarantee the feasibilitg6f 1, we
can quickly find a feasible solution. In our evaluation, wetke
shrinkage ratio tax = 0.5. Finally, to better deal with numerical
imprecision in our feasibility test, we scale dow#) by 1% at the
end of each iteration (Line 9 in Figure 6).

Since our problem is NLP, we cannot guarantee a global opti-
mal solution. To improve the quality of the final solution, wse
multiple starting points. We always include an all-zerortitg
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Figure 7: The amount of traffic sent to an AP in 10-second in-
tervals. Top: At a WiFi hotspot. Bottom: At SIGCOMM 2004.

points {.e. all flows are inactive). To favor flows that are more
likely to achieve higher throughput, we also adighf — 1) starting
points, each with only a single active flow. Specifically, &ach
d=1,...,n, we find the Iarge5>t'(§‘It < xj such that it is feasible for

flow d to send at ram';;‘it while all other flows are inactive. This can
be done efficiently using the subroutiget_max_scaling_factor
(see Section 5.2). We then select tiyf — 1) flows with the
Iargesb('é"t, reduce their rates by a constant factor (2 by default) so
that they are not too close to the boundary of the feasiblgisol
space, and include the resulted traffic assignments as antingt
points. In our experiments, we ubl,i; = 4 starting points. How-
ever, our experience suggests that even a single all-zartingt
point often yields good performance.

5.4 Discussion

We now discuss certain practical aspects of our optimimatio
strategy. Our algorithms can be implemented at a centratitot,
such as in Tesseract [34], or in a fully distributed mannée is-
tribution is similar to that in link-state protocols such@SPF, in
which all nodes implement the same algorithm, over the sate d
and thus arrive at consistent solutions. Apart from topgliodor-
mation, distributing our algorithms also needs demandnedts
for various flows.

Another aspect that is related distributed implementaitaine
computational requirements of our approach. An exact dfirant
cation is a subject of ongoing work, but in our experiments we
have not found it to be a problem. In our unoptimized implemen
tation, rate computations are practical for online optatian. For
instance, in our experiments, it takes roughly three sextmdpti-
mize ten flows in 25-node topologies.

Finally, our methods use flow demands as inputs for optimiza-
tion. We propose that nodes base their estimates on recent hi
tory. Such a strategy is effective only if there is tempotabgity
in flow demands. While wireless meshes are not significargty d
ployed yet to settle this question with certainty, we gasight into
this issue by studying wireless usage in two different emrinents
— at a WiFi hotspot in Seattle and at the SIGCOMM 2004 confer-
ence [22]. Figure 7 shows for 10-second windows, the aatafic
sent to an AP and the traffic predicted by EWM&0.5) over his-
tory. We see that traffic exhibits a high degree of tempoedifity
and EWMA predicts future traffic fairly accurately. What wisly
appears as sharp peaks and valleys in traffic are in fact coedpaf
multiple time intervals, compressed so that we can show hou
period. The average traffic volume is 723.5 Kbps for the hatsp
trace and 43.77 Kbps for the SIGCOMM trace. The mean absolute
error (MAE), defined asnearf|Estimated- Actuall), is 200 Kbps
for the hotspot trace and 15 Kbps for the SIGCOMM trace. Our
rate-limiting would actually even out those spikes if thesenot



enough capacity in the network. Suppose the APs that we meeasu
were nodes in a city-wide wireless mesh, aggregating trafim
similar clients and sending it to a nearby gateway on theirhal
mesh backhaul. Then, by extrapolating from these envirosne
we judge that the nodes would be able to obtain reasonatie est
mates of their demands.

6. EVALUATION METHODOLOGY

We evaluate the accuracy of our approach using extensieetks
and simulation experiments. The former provides a settiitg w
real-world complexities. The latter lets us conduct a bevaenge
of experiments and also lets us vary parameters such atppol
that we cannot control for the testbed.

We divide our empirical results across three sections.

e In Sectiorl 7, we evaluate the accuracy of our model.

e In Sectior] 8, we evaluate the degree to which our model can
improve performance for both goals, maximizing fairnesmax-
imizing total throughput. We quantify fairness using thasslic
Jain’s faimess index, which is defined @sx )2/ (n* ¥ x;%) for de-
mandsxj...Xn.

e In Section 9, we show that it is rate-limiting that is crifi¢a
network performance. Exactly how the routes are choserss le
important.

In the first two sections, we use ETX as the routing protocol.
ETX selects the path that minimizes the total number of eiguec
transmissions from a source to its destination [3].

6.1 Strawman: Conflict Graph Model

6.2 Simulation Experiments

Our simulations are based on QualNet v3.9.5. We use 802.11a
with a fixed bit rate of 6 Mbps and free-space model of signappr
agation, which provides a communication range of 230 metérs
interference range of 253 meters.

We generate traffic using both TCP and UDP and consider two
types of application demandgi) saturated demangsn which
sources always have traffic to send; giig random demandsn
which the demand of a source is picked randomly from a uniform
distribution between 0 and the maximum link load. We vary the
number of flows from 1 through 20 where each flow is between a
unique sender-receiver pair.

We consider two kinds of topologies in this paper: 5x5 grid
topologies and 25-node random topologies. Both occupy &7728D
m? area. We also study other network densities and find thagthe r
sults are qualitatively similar. So we omit them from thigpeain
the interest of brevity.

For each scenario, we conduct 10 random trials. In each trial
flow sources and destinations are picked randomly. For rando
traffic demands and random topologies, each trial also rafydo
generates the demands and the topology.

We evaluate the performance with and without RTS/CTS. When
RTS/CTS is enabled, we set RTS threshold to 100 bytes so that
(small) TCP ACKs do not incur RTS/CTS overhead. In order for
TCP to be robust to high link loss rates, we use TCP NewReno and
set the MAC-level short and long retry counts to 16. This s th
largest maximum retry count allowed in madwifi-old drivehieh
we use in our testbed.

We compare our approach to one based on the conflict graph  Since several routing metrics.g, ETX [3] and MIC [35]) are

(CG) model of interference[14]. We note that the use of CGehod
has not been proposed in practical settings, but it pro\adeater-
esting comparison point in our evaluation.

The CG-based model assumes that packet transmissions-at ind
vidual nodes can be finely controlled. It represents wistlieks as
conflict vertices and draws a conflict edge between two carfic
tices if and only if the corresponding wireless links inezd. Based
on the definition, it is clear that links corresponding toftichver-
tices in a clique in the conflict graph cannot be active siengt
ously. Therefore, an upper bound of optimal wireless thinpud
can be computed by solving a linear program (LP) which speifi
the goal of maximizing the total traffic delivered to the destion
while satisfying flow conservation and clique constraints.

We apply this formulation to derive the rate limits that maxi
mize the total throughput. When applied to different roatestion
schemes, we enforce traffic to follow the selected routesdiojng
the following linear constraints. For each Demahand each Link
e Tge < Cape x 74, WhereTy ¢ is the amount of traffic success-
fully routed for demandl on link e, Cap: is the capacity of linle,
andzy ¢ = 1if eis used to route demartiand O otherwise.

To maximize fairness, we use a similar formulation. The main
difference is that we change the objective to maximizingtttal
throughput across all the flows and the portions of their detma
that are achieved. This can be expressel @, (e)—destd) Td,e +
Aa s gx4, Wherer (e) is the receiver of Linke, des{(d) is destina-
tion of Demandd, x4 is traffic demandg is the minimum propor-
tion of its demand that can be achieved, ancontrols the relative
importance of these two objectives. In addition, we add tre ¢
straints to ensure that each flow receives throughput notthess
axg (i.e., for each Demand, 3 (g)—destd) Td.e = 0%q). Our eval-
uation usest = 100 to significantly favor the solution with high
fairness when maximizing fairness.

designed for wireless networks with lossy links, we extehd t
QualNet simulator to generate directional inherent patbstes.

In our evaluation, we randomly assign bit-error-rate (BER)nks
such that the data packet loss rates are uniformly distibbe-
tween 0 and 80%. As wireless link loss rates depend on frame
sizes, our evaluation considers both small and large fraffiesy
have respective application payload sizes of 106 bytes a2d 1
bytes. The broadcast probes used to measure link qualitpfior

ing are also 106 bytes, as in [3].

6.3 Testbed Experiments

Our testbed consists of 19 nodes located inside an officdibgil
Each node runs Linux and is equipped with a NetGear WAG511
NIC. We run 802.11a with a fixed bit rate of 6 Mbps. We are not
aware of other 802.11a users in our building. We use the lowes
transmission power for our nodes to increase the netwonkelia
ter. In this setting, we measured the diameter to be 7 hopagth
routing paths may be longer. Other settings are consistintie
simulations.

The routing protocols are implemented using click [2]. We us
nuttcp[24] to generate and measure UDP and TCP throughput. To
rate limit flows, we letnuttcp generate application traffic at the
specified limit. Without rate limit, each source generatpplia
cation traffic as per its demand. We experiment with 1-16 flows

Asis common [3, 4, 35], we measure link quality using broatica
probes. Figuré 8 shows CDF of link loss rate in our testbed. We
prune links exceeding 90% loss rates in our route selection.

7. MODEL VALIDATION

Below we show that our model is accurate in a range of settings

Methodology A good interference model should closely approx-
imate achievable throughput given traffic demands as inghith
implies that: (i) the throughput estimate should be actikvan the
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Figure 9: Throughput prediction accuracy in simulation of our

Figure 8: CDF of link loss rate in our testbed. model for grid topologies, saturated UDP traffic, and RTS/CTS
= OFF.
network, i.e., the model should not over-predict throughaod (i) 20 1

the network should not be capable of delivering more thrpugh
i.e., the model should not under-predict. It is straightfard to
evaluate for over-prediction — instantiate the estimaledughput
to the network and check if the actual throughput comes close
Evaluating under-prediction is more tricky. We would like t

Actual throughput (Mbps)
Fractions of runs
°
&

increase the load on the network beyond what the model estsma 0 o

. 0 2 4 6 8 10 12 14 16 18 20 0 0.2 0.4 0.6 0.8 1
and check how often that leads to h|gher network thrOUgHﬁOW- Estimated throughput (Mbps) Ratios between actual and estimated throughput
ever, given multiple flows, there are numerous ways to irse eet- ] o o ]
work load. Our experiments use a simple uniform scaling @i Figure 10: Throughput prediction accuracy in simulation of

that increases each flow throughput by the same factor. Wecate ~ the CG-based model for grid topologies, saturated UDP de-
ing factors of 1.1, 1.2, and 1.5, which correspond to indrepi®ad mands, and without RTS/CTS.
by 10%, 20%, and 50%.

Figure/ 9 shows the format in which we present results in this
section. To evaluate under-prediction, the left graph shewacatter
plot of actual and estimated throughput. The two lines orsta-
ter plot correspond tg=x andy=0.8x. They help judge the accuracy
of the model visually. There will be no points aboyex as the net-
work can never achieve more throughput than what is insttatti
The points belowy=0.8x correspond to instances where the actual
throughput is less than 80% of what is predicted by our mottet.

predicted throughput in half of the cases. Thus, modelir@gy BD
DCF, as our model does, is key to accurate predictions ofar&tw
throughput. Interestingly, the inaccuracy of the CG-basediel
also hints at the performance cost of the CSMA-based 802AC M
under heavy load.

Figurel 11 shows that our model is robust across a wide range
of other simulated configurations. For TCP traffic, it ovéireates
throughput by more than 20% in fewer than 20% of the cases. Thi

right graph is a CDF of the ratio of actual and estimated thhput, accuracy is less than that for UDP because TCP creates wafsty

before and after scaling. Thevalue of the point where a scaled fic and losses, Whigh we (:;.) no:] currentlykmodel. I;:owe\;]er, as fo
curve reaches=1 represents the fraction of cases where our model YPP: We never under-predict the network’s TCP throughpenev

i ; . by 10%.
under-predicted by at least the scaling factor. The figuggsemate . . '
results across all flow counts that we generate. These cuants The remaining graphs in the figure show that the accuracyof ou
between 1-20 in simulations and 1-16 in our testbed expetisne model is high even when we switch from grldlto random topasgi
In the experiments below, we use a data packet payload of 1024°" from saturated demands to randomly assigned demandsnor f

bytes and use ETX to select routes. We find qualitatively laimi not using RTS/CTS to using it.
results for smaller payloads (not shown) and other routigsies 7.2 Testbed Experiments

(Section 9). . o .
Figure[12 shows that our model is fairly accurate in the more
7.1 Simulation Experiments realistic testbed setting as well. For UDP, only in 10% ofthses

. h h ¢ oredicti he th hout i we over-predict throughput by more than 20%. For TCP, thes-ov
Figure 9 shows the accuracy of predicting the throughput in a prediction occurs for 20% of the cases, which is similar tat th

grid topology with saturated UDP demands and without RTSCT simulation. The worst-case over-prediction is less tha¥ 46r

We can see from_the scat_ter plot t_hat the vast majority 9f thetp both TCP and UDP. Meanwhile, as in simulation, our model does
lie between the lines, which implies that we over-predidivoek not under-predict either. For both TCP and UDP, the netwsrk i
throughput by more than 20% in very few cases. From the stale= 46 tg achieve demands that have been scaled by even 10%.
CDF on the right, we can see that there are fewer than 15% such Figurel 13 shows the throughput prediction accuracy using CG
cases. Meanwhile, the worst-case overestimate is under 20% model. We see that, as in simulation, the CG-model consigten

major cause for these over-predictions is th_at our mode:]_ass over-estimates the achievable rates. Almost all the pairgsut-
pairwise .|nterferenge. The madel over-predlcts when Beithvo side the cone formed by= x andy = 0.8x, which indicates that in
senders interfere with a link alone but their total noisdemively most cases its estimated demands are not achievable wi%n 8

interferes with the link.
The scaled CDFs show that our model does not under-preédlict ei

ther in this configuration. In almost all cases, the netwsnlriable 8. PERFORMANCE OPTIMIZATION

to achieve demands that have been scaled by even 10%. Can the accuracy of our model in predicting the throughopt su
For the same configuration, Figlre 10 shows the accuracyeof th ported by the network be harnessed to improve performarsee, u
CG-based model. Clearly, this model vastly over-predidiatihe ing the methods we outlined earlier? We answer this quegtion
network can achieve, because of the assumptions it makesthieo this section by first considering fairness maximization dmen
ability of the nodes to finely coordinate their transmissioRrom throughput maximization. We compare results with no rate li

the CDFs, we can see the network achieves less than half of theiting, as it happens today, and with CG-based rate limiting.
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Figure 11: Throughput prediction accuracy in simulation of
our model for various configurations. The difference from the
base configuration in Figurd 9 is in bold.

8.1 Maximizing Fairness

Figurel 14 shows the fairness index for TCP and UDP traffic in
our testbed. We see that the fairness index with our algorith
remarkably close to 1 for both kinds of traffic and across &ll o
fered loads. Without rate limiting, fairness degrades kjyi@as
load increases. Even with the CG-based rate limiting, éssnis
substantially lower than with our rate limiting.

Figurel 15 shows the fairness provided by our model-driven ap
proach holds in a range of simulated configurations, for G@RP
and UDP traffic, including grid and random topologies, wistus
rated or random demand models, and with and without RTS/CTS.

8.2 Maximizing Total Throughput

We next consider the performance objective of maximizirglto
throughput. Figure 16(a) shows that the benefits of ratditignfor
saturated UDP traffic in our testbed are significant. The ly@p
the left plots the average total throughput, and the grapgheright
plots the average normalized throughpue.( the throughput under
rate limit normalized by the throughput under no rate limith
terms of absolute throughput, UDP traffic experiences o0&ed
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Figure 12: Throughput prediction accuracy of our model in our
testbed. RTS/CTS=0OFF.
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Figure 13: Throughput prediction accuracy in our testbed us
ing CG-model for saturated demands and RTS/CTS = OFF.

improvement; in terms of normalized throughput, the averiag
provement ranges from 100% to 2400%. The larger improvement
in the latter suggests that rate limiting is especially lierz to the
flows that experience low throughput under no rate limitihgke
our model, the CG-based model is able to identify interfeeen
related bottlenecks and impose rate limits. Thereforelishikoost
network throughput. However, because the CG-based maglel si
nificantly over-predicts throughput (Sectioh 7), the lcs®in the
network is much higher and the throughput is consistentlyelo
Figurel 16(b) shows the benefit of rate limiting extends talcan
UDP demands.

Figurel 17 shows that the gain from rate limiting saturated an
random TCP flows is a more modest 10-50%. This lower im-
provement for TCP is expected given that we experiment with i
finitely long flows that react well to congestion, thus mirging
interference-related losses. However, we believe thatlimiting
will provide substantial benefits when TCP traffic is compbeé
many short transfers, as is common for Web transactionsusec
an aggregate of short TCP flows is significantly less resperisi
losses than long TCP flows.

Figure[ 18 shows the network throughput improvement for-vari
ous simulated configurations with UDP traffic. The error lgs
note standard deviation. We see results consistent wittettbed
across all configurations.

Figure 19 shows the effectiveness of rate limiting for TGRfitc
in simulated configurations with and without RTS/CTS. We sse
with the testbed, the benefit of rate limiting tends to inseewith
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Figure 14: Fairness comparison in testbed. RTS/CTS=0OFF.
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Figure 15: Fairness improvement in simulation for difference
configurations. The aspect of a configuration that differs fom
the first one is in bold.

more flows. Its benefit increases to 20-40% when the number of
flows reaches 20. In general, rate limiting helps TCP tra#&sl
than UDP traffic.

9. THE ROLE OF ROUTING
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Figure 16: UDP throughput improvement in our testbed with
rate limiting.
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Al the results above are based on routing paths chosen by theFigure 17: TCP throughput improvement in our testbed with

ETX protocol. In this section, we show that, surprisinghe thoice
of the exact routing protocol makes little difference in experi-
ments. We study three other protocols and find that all fobaie
similarly. What seems to matter most is whether flows aregbein
rate-limited.

The three other protocols that we study are the following.

e HOP selects a path with minimum hop-count.

e MIC [35] scales ETX values of a link by multiplying it by the
sum of the neighbors of the two end points. It then selects a
path with the minimum scaled ETX value.

e CG selects the routes by casting the routing problem to a
maximum flow problem augmented with interference con-
straints derived by a conflict graph [14]. These routes are
close to optimal if nodes can finely coordinate transmission

We consider only the goal of maximizing throughput in this pa
per, but we obtain similar results for maximizing fairness.

Figurd 20 shows UDP and TCP performance under different rout
ing schemes. The bottom four curves are the performancdfer-di
ent routing schemes under no rate limiting, and the top fawes

rate limiting.

show the results using rate limiting based on our model, tith
objective of maximizing total throughput. We see that theting
schemes are almost indistinguishable. Rate-limiting doaeter,
however. For each scheme, rate-limiting using our modeliges
50-400% gain for UDP and 10-45% for TCP.

In Figurée 21, we can see the same effect in other simulated con
figurations. Routing does not seem to matter whether we h@we T
or UDP traffic, saturated or random demands, big or small pay-
loads. To rule out differences in probe packet size and palylo
size, which may cause ETX to select the wrong path, we alse con
sidered probe-sized payload packets. As Figure 21(d) shibat
does not make a significant difference either.

These routing protocols differ in how they account for ifger
ence, but they all have their shortcomings on that front (aee
previous work/[20] for more details). For example, the ETXrice
is determined by packet loss rates at receivers, so it ongtuoes
receiver-side interference but fails to capture sendie-giterfer-
ence that stops nodes from transmitting. Moreover, theachar-
istics of probing traffic and data traffic can be quite differén
terms of, for instance, volume, packet sizes and generptitiarn,
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Figure 18: Throughput improvement in simulation with rate
limiting for UDP traffic for various configurations. The aspect
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Figure 19: Throughput improvement in simulation with rate
limiting for saturated TCP demand and grid topology.
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which makes the two observe different loss rates. Theretbee
ETX metric does not accurately predict the actual perfolraaax-
perienced by data traffic. The MIC metric is based on ETX, so it
has similar issues. The CG-based routing assumes perfeide

ing and tends to select longer detours, which perform wedleun
perfect scheduling but not under 802.11.

What we show is that once we have properly managed inter-
ference through rate-limiting, the small variations inting paths
produced by these protocols have relatively low impact ¢l twet-
work throughput. We also repeat that our methods for ramétitig
are agnostic to the choice of the underlying routing protothey
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Figure 21: Throughput in simulations of the four routing meth-

ods — HOP, ETX, MIC, and CG — with and without rate-

limiting. The top four lines in each graph are for the case
of rate-limiting and the bottom four are for non-rate-limit ing.

The aspect that differs from the first configuration is in bold.

can thus work with whichever routing method that providedre
performance in the given setting.

10. RELATED WORK

Our work builds on a large body of prior work that we broadly
classify into three categories: (i) interference modeliip rate
control and scheduling; and (iii) routing.

Interference modeling  There is a rich body of work on model-
ing wireless interference. One class of works focuses ompgytic
performance bounds. The seminal work by Gupta and Kumar an-
alyzed the capacity of a wireless network under certaiffi¢rpht-
terns and topologies [13]. Other researchers have sinemdad
this work to other traffic patterns [19], mobility [12], anétwork
coding [11]. While these works lend useful insight into ttefpr-
mance of wireless networks in the limit, their models aretralos
by necessity and cannot be used to model any specific reabrietw

The second class of works studies wireless performance for a
given network topology and traffic demands but does not mibeel
MAC and instead assumes that packet transmissions can be fine
scheduled across links [14]. As we show in Section 7, thesdetao
significantly over-estimate the performance of 802.11 pneftar

The third class of works model the performance of 802.11 DCF
MAC. Most models in this class target scenarios where evedgn
is within communication range of the others/[1, 18, 8, 10] beve
traffic demands are restricted (e.g., a single flow [10, 8]vay t
flows [30] or to a single neighbor [9]). In addition, all thecsle
models, except [30], assume binary interference. [31] i oh
the few that supports non-binary interference. But it resgide-
tailed measurement of the current network condition, ssathan-
nel busy probability and packet loss rates (including sl rate).
Soit has limited prediction power — it can only estimate tifieat of
introducing one new flow to the network. Two recent models [27
16] are more general but even they target only one-hop desnand
and are also too expensive to be used for optimization.



In contrast, we tackle the most general case of multi-hopltsp
gies and end-to-end flows, but even so our model is lightweigh
enough to be directly used for optimization.

Rate control and scheduling The importance of rate control and
scheduling has been well recognized. Some existing wofk2[B,

5] propose joint optimization of rate control and schedyliif-
ferent from these works, our approach works with existing. 80
MAC scheduling. IFRC enables fair rate control for sensdr ne
works in which all nodes send traffic towards one or more qi28k

It is specific to the tree topologies and sensor network veadkl
Our prior work shows preliminary evidence on the importante
rate limiting and the possibility of using conflict graphg tbat
purpose [20]. In this paper, we develop a more accurate nsmdel
that we can perform predictable performance optimization.

Routing  Most routing protocols for wireless networks follow a
least-cost-path model but differ in the methods for estinggalink

(4]

(5]

(6]
(7]

8]

]

[10]

11]

cost. Some use hop count [26, 15], some use expected number of;;

transmissions (ETX) [3], while others use ETX scaled bydext
such as modulation or the number of neighbors [4, 35, 32]s&he
sequence of metrics are motivated by improving the perforeaf
routing. We show, however, that rate-limiting flows is keypre-
dictable and high performance — severe performance ddgyada
can occur in its absence — and the differences in routingicsetr
appear to matter less.

11. CONCLUSION

Our work demonstrates the feasibility of predictable perfance
optimization for wireless networks, thus making the tasknain-
aging and optimizing them as predictable as that for wired ne
works. The foundation of our approach is a new model that cap-
tures interference, traffic, and MAC-induced dependenicidbe
network using only a small set of constraints. Our model aise
tic enough to handle real-world complexities such as hiddemi-
nals, non-uniform demands, and non-binary interferenue yat it
is lightweight enough to drive network optimization.

Evaluations of our methodology using a testbed and sinmuiati
showed that it is very effective. Across a range of topologyg a
traffic configurations, it was able to accurately approxentie
throughput that the network yielded. It rarely under-peceeti, and
for 80% of the cases, it estimated within 20% of the actuaubh-
put. When maximizing fairness using our methods, we achlieve
close to perfect fairness amongst flows for both UDP and T&P tr
fic. When maximizing throughput, we found that our methods ca
improve network throughput by 100-200% for UDP-based taffi
and 10-50% for TCP-based traffic.

In the future, we plan to address several practical issuesdier
to apply the approach to operational wireless networksst FRive
plan to develop novel measurement techniques to passindige:
curately estimate interference and seed our model. Seaaplan
to evaluate our approach under realistic traffic demand<tiznge
with time. Third, we plan to improve the efficiency of disset-
ing the inputs to our algorithms by adapting the update feaqy
based on the rate of change and applying delta encoding.
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