
SmartOS: Towards Automated Learning and
User-Adaptive Resource Allocation in Operating

Systems
Sepideh Goodarzy

sepideh.goodarzy@colorado.edu

University of Colorado Boulder

Boulder, Colorado, USA

Maziyar Nazari

maziyar.nazari@colorado.edu

University of Colorado Boulder

Boulder, Colorado, USA

Richard Han

richard.han@mq.edu.au

Macquarie University

Sydney, NSW, Australia

Eric Keller

eric.keller@colorado.edu

University of Colorado Boulder

Boulder, Colorado, USA

Eric Rozner

eric.rozner@colorado.edu

University of Colorado Boulder

Boulder, Colorado, USA

ABSTRACT
Today’s operating systems typically apply a one-size-fits-

all approach to resource management, such as applying a

scheduler that treats all processes of equal importance. The

goal of this paper is to explore a learning-based approach

to resource management in modern operating systems in

which the OS automatically learns what tasks the user deems

to be most important at that time and seamlessly adjusts

allocation of CPU, memory, I/O, and network bandwidth

to prioritize user preferences on demand. We demonstrate

an implementation of such a learning-based OS in Linux

and present evaluation results showing that a reinforcement

learning-based approach can rapidly learn and adjust system

resources to meet user demands.

CCS CONCEPTS
• Software and its engineering→ Operating systems; •
Computing methodologies → Reinforcement learning; •
Human-centered computing→ Human computer inter-

action (HCI).

KEYWORDS
Operating systems, Reinforcement Learning, Human Com-

puter interaction

APSys ’21, August 24–25, 2021, Hong Kong, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8698-2/21/08.
https://doi.org/10.1145/3476886.3477519

ACM Reference Format:
SepidehGoodarzy,Maziyar Nazari, RichardHan, Eric Keller, and Eric

Rozner. 2021. SmartOS: Towards Automated Learning and User-

Adaptive Resource Allocation inOperating Systems. InACMSIGOPS
Asia-Pacific Workshop on Systems (APSys ’21), August 24–25, 2021,
Hong Kong, China. ACM, New York, NY, USA, 8 pages. https://doi.

org/10.1145/3476886.3477519

1 INTRODUCTION
Today’s user-facing operating systems (OS)s, such as lap-

top, mobile, and desktop OSs, are typically designed with a

one-size-fits-all approach to resource management. For ex-

ample, the Linux Completely Fair Scheduler (CFS) effectively

divides up the CPU equally among all processes, assigning

them essentially the same static priority [1, 13]. In contrast,

users interacting with an OS often move from task to task

and application to application, wanting sufficient resources

devoted to their current task, such as editing a document,

chatting via zoom, or listening to music. In addition, users

often have many applications open simultaneously, some

from previous tasks that may be resumed in the near future,

including multiple tabs in a browser persistently refreshing

their content, resulting in a landscape of many applications

continuing to consume system resources. In this context, the

current approach of static prioritization often fails to devote

sufficient resources to the applications that the user cares

most about at that moment, resulting in degraded perfor-

mance. For example, many users experience a slow down

on their computer when there are numerous open applica-

tions which collectively act as CPU hogs or memory hogs,

in some cases due to runaway processes, and interfere with

the tasks that the user deems most important. Other pro-

cesses occupy enough network bandwidth to interfere with

real-time audio/video, including software updates and cloud

synchronization. Anyone who has tried to conduct a Zoom

48

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3476886.3477519
https://doi.org/10.1145/3476886.3477519
https://doi.org/10.1145/3476886.3477519
https://creativecommons.org/licenses/by/4.0/


APSys ’21, August 24–25, 2021, Hong Kong, China Goodarzy, et al.

call while there is another local network-hogging applica-

tion understands this difficulty. Ideally, a next-generation

OS would benefit the user and alleviate these bottlenecks

by being able to learn what applications the user currently

considers to be most important and adaptively prioritizing

allocation of resources to those applications.

Limited performance in today’s operating systems has

become enough of a concern that machine learning (ML)

has begun to be applied to improve application execution.

Perhaps the most closely related to this work is the recent

Acclaim system that seeks to improve user experience in

the Android OS by predicting what memory pages are going

to be used next by employing machine learning [12]. Ac-

claim assumes that the most important applications are the

foreground application and audio/video apps, and statically

prioritizes page reclamation for these applications. As we

show later, static prioritization is not ideal in a variety of cir-

cumstances. In addition, machine learning has been applied

to improve Linux process scheduling [4, 19], I/O schedul-

ing [11, 14], and network cloud systems [5], but each only

considers one resource dimension, rather than jointly allo-

cating CPU, memory, networking and I/O, and also do not

learn user preferences for resource allocation.

Some previous work has combined machine learning with

control theory to preserve the quality of service while mini-

mizing energy consumption [16]. The issue with this method

is that conservative configuration is used until enough data

is gathered to do offline learning. Once training is finished,

the resource configuration is changed in their control system.

As a result, this method can not be used in an interactive

environment with the user due to the fact that despite the

user giving the system feedback, the system will not change

the configuration of resources in a computer until it has

enough data that it can do offline training. Other works in

the literature used control theory try to find the sweet spot

of accuracy and performance trade-off space in dynamic

environments [9, 10]. Still, their method is not suitable for

our problem space as the goal in our problem space is sub-

jective (user preference) and changes more frequently than

objective goals such as application performance and energy

consumption which are the focus of those works. This is due

to the fact that control theory is based on modeling the envi-

ronment, while reinforcement learning methods in machine

learning are also applicable to environments where there

is a lack of knowledge to be modeled perfectly (model-free

reinforcement learning).

Building upon this theme, this paper explores the role

of machine learning in the design and implementation of

next-generation operating systems, harnessing the explod-

ing interest in artificial intelligence and machine learning

to improve the user experience through automated learn-

ing and resource allocation in the OS. We investigate how

the OS may be structured to accommodate learning-based

management of joint resource allocation for memory, CPU,

I/O, and network bandwidth in response to user behavior.

We consider which machine learning algorithms may most

effectively integrate and learn from user behavior. We also

seek to understand whether there is any net benefit in per-

formance to applying machine learning in OS design and if

so to quantify the benefits.

The challenges we face are significant. The context that

governs what the user values as most important at any given

time is complex and difficult to learn. For example, a user may

currently be engaged in editing a document, and would pre-

fer to have CPU and memory resources prioritized towards

editing. Adding complexity, the user may also be streaming

a music video from a cloud provider at the same time and

wish to listen to music while editing. This different modality

should also receive high priority in terms of CPU, memory,

and notably network bandwidth. Static prioritization poli-

cies become difficult to craft as we consider such increasing

complexity. Heightening the complexity, each application

may consist of multiple dependent communicating processes

who would as a group need to receive elevated allocation.

This paper proposes SmartOS, a learning-based operat-

ing system that takes the user interactions with the OS into

account to perform automated resource management. Smar-

tOS leverages reinforcement learning to continuously gather

feedback from the environment and make changes in the re-

source parameters exposed by the Linux operating system’s

kernel to improve the user experience. The contributions of

this paper are as follows:

• We describe an architecture that integrates machine

learning into the OS as a user space module controlling

allocation of memory, CPU, network, and I/O.

• We utilize reinforcement learning (RL) to solve the

difficult challenge of learning the user’s context and

applying the appropriate resource allocations.

• Wedemonstrate that our RL algorithm is able to rapidly

converge to the desired allocation of system resources

and that the overhead is modest.

In the following, we first describe our design goals and

overall architecture in Section 2, then explain the system

implementation in Section 3, followed by the evaluation

results in Section 4, discussion and future work, and finally

conclusions.

2 OVERVIEW
Figure 1 depicts an overview of SmartOS. The main learning

component of the system is the Cortex, which is the "brain"

of the system and is responsible for monitoring the applica-

tion status, user context, and the user’s interaction with the

computer. In response to this state information, the Cortex

49



SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems APSys ’21, August 24–25, 2021, Hong Kong, China

Figure 1: Learning-based SmartOS architecture.

determines which resource allocation policy is the best in

satisfying the user’s expectations. The Cortex applies the

determined resource allocation policy through parameters

exposed by the kernel. The kernel then allocates CPU, mem-

ory, network bandwidth, and disk I/O among applications

according to the specified parameters. The new resource

distribution changes the quality of the user experience. To

indicate the resource policy has successfully achieved its ob-

jectives, the user provides feedback based on their experience

to the Cortex.

The overall architecture and design of the SmartOS system

reminds us of Reinforcement Learning (RL). RL consists of

an agent that measures the current state of the environment,

acts on the environment, and watches the environment’s

next state. Also, it receives a reward based on how that ac-

tion has affected the environment to reach its objective. In

general, the RL agent’s objective is to maximize the total

gained reward. As a result, the instant gain of action is not as

valuable as the entire gain of a set of actions over time. The

nature of RL makes it suitable for decision-making problems.

Due to the similarity between the SmartOS system and RL

design, we decided to utilize an RL algorithm in the Cortex.

Another reason for this decision is that the OS constantly

decides on sharing of resources among processes and sched-

uling processes. This is highly suitable to RL, which is also

constantly adapting its decisions based on the available state

information. Other machine learning techniques such as su-

pervised learning and unsupervised learning are not very

suitable for our problem as they cannot handle the dynamic

nature of our problem. However, the correct identification

of the environment’s current state, set of possible actions,

and reward makes this approach challenging [16].

In pursuing this Cortexmodel for integrating user-adaptive

learning into anOS, we chose to locate the Cortex component

in user space. This affords us the ability to easily manage,

test, debug, and update the software and learning algorithms.

Another approach is to place the learning component within

kernel space. This can improve performance. For example,

KMLib provides a fast library framework for ML applica-

tions [3] in kernel space. However, using such a library is

difficult because of the challenge of managing and debug-

ging code in kernel space. It is also a trend in the industry

to move applications to user space to prevent tight coupling

and slow release cycles [15]. We show in section 4 that the

performance of our RL-based system in user space is quite

responsive given the human time scales for adaptation.

Actions: In order to distribute the computer resources among

different applications, one can use the parameters in the ker-

nel or change the kernel code. We have chosen to use the

predefined parameters to control resource allocation to be

compatible with different Linux versions (see Section 3). This

choice will enable us to write our system in user space and

will make it easily pluggable.

Among different resources in a computer, the CPU, mem-

ory, network, and disk I/O are the main focus of our system

as their allocations are critical to application performance.

Rewards:The best reward selection is user feedback because
SmartOS’s final goal is to find the best resource allocation

policy based on user preferences. Therefore the user is the

only person who can show how effective the Cortex was in

reaching its objective. This feedback can be implicit and non-

intrusive based on passively monitored interactions such

as keyboard strokes or mouse clicks and movements. For

example, when the user is frustrated with their computer,

they may move the mouse quickly or type more quickly. The

feedback also can be explicit via a specialized application for

providing feedback.

3 PROTOTYPE
The Cortex of SmartOS was implemented on Linux, Ubuntu

20.04 in user space. As a first step to test the feasibility of

employing RL to automatically tune parameters, we con-

structed simplified discrete-valued models for the environ-

mental states, actions, and rewards, reasoning that if we can

show benefits in such a system, then we can later address

the complexity of continuous-valued states. We limited the

environment state to the applications’ resource usage pro-

files, whether the applications are foreground or background,

and whether the application is a video/audio application. If

an application is in the foreground, the foreground value

in the environment’s current state vector will be one and

zero otherwise. As noted in the Acclaim work, whether a

process is in the foreground or background state is a key

indicator of what the user views as being important at that

moment, though as we shall see statically prioritizing the

foreground is not the whole story. Similarly, the value is one

50



APSys ’21, August 24–25, 2021, Hong Kong, China Goodarzy, et al.

if an application is video/audio or zero otherwise. This allows

us to examine how the modality of the application must be

considered in learning the best resource allocation. As for

the CPU, memory, network, and disk I/O values in the state

vector, if the application is intensive in the consumption of

any of these resources, the corresponding vector index for

that resource type will be one otherwise zero. By choos-

ing four independent resource dimensions, this allows us

to examine cases where high priority applications may de-

mand intensive resources in certain dimensions while being

interfered with by other applications in a variety of complex

ways.

We also limited the range of the possible actions. A value

of one in the action vector for any types of resource means

high priority in that corresponding resource and otherwise

normal priority.

As for the reward, to test the space of a wide variety of user

behavior, we created a script that generates user feedback

synthetically. This gives us more freedom to explore many

different types of user behavior, both from a user resource

perspective as well as a temporal perspective. The script only

gives +1 as a reward for the best action, and 0 otherwise. The

best action is the resource allocation policy that results in

highest performance in the applications that are important

to the user in a given scenario.

Resource allocation: We then leveraged various system

tools in Linux to implement changes in relative allocation of

system resources to each application, effectively giving us

the ability to change the prioritization of different processes

independently in four separate dimensions: CPU, memory,

I/O, and network bandwidth. The RL algorithmwould manip-

ulate these system "knobs" and then inspect whether it had

converged towards the best allocation of resources. Different

resource parameters are controlled as follows:

• CPU:We used the nice value of -20 for high priority

and 0 for normal priority to control CPU allocation.

• Memory: To control the memory, we used the parame-

ters oom adjacent score and cgroup memory swappiness.
To set a high priority for memory for an application,

we used −1000 and 0, for oom adjacent score and cgroup
memory swappiness, respectively, and for normal pri-

ority, we used 0 and 60.

• Network: We utilized cgroup netprio ifpriomap to dis-

tribute the network bandwidth among applications.

For high priority and regular priority applications, we

used 10 and 0 respectively as priority values.

• Disk I/O: To manage the Disk I/O, we leveraged ionice.
We used a real-time class with priority 0 for high pri-

ority applications and left the priority of the standard

application as default (idle class with the priority of 4).

Reinforcement Learning algorithm: For implementation

of the automated learning, we employed the Monte Carlo

Reinforcement Learning algorithm, which is shown in Sec-

tion 4.5 to have the best convergence rate compared to other

methods in Table 1. For testing some of the algorithms such

as DQN and A2C, we used [8], and for the other algorithms,

we used Python 3.6 [2] and the Numpy [6] package.

4 EVALUATION
We sought to compare the automated learning approach of

SmartOS, which applied RL to learn the proper allocation of

CPU, memory, I/O, and network bandwidth, with a variety of

static prioritization schemes. The following are the different

static prioritization heuristics that were compared against:

Fg only: This heuristic sets the CPU, memory, network, and

disk I/O parameter of the Foreground application to high

priority.

Fg + video/audio: This heuristic inspired by [12], adds to

the previous heuristic by also giving high priority in all four

resource dimensions to a video/audio application resulting

in competition in some dimensions for resources with the

foreground application. The idea was to test the case where

a user may be editing a document while listening to music

or playing a video.

Fg + dependent: It gives high priority to the foreground

application and all other applications that foreground per-

formance depends on. It identifies the mentioned applica-

tions by a predefined directed acyclic graph. We specify the

DAG based on our common observation of what applications

each application usually depends on. We aim to test the case

where an application on a computer may consist of a set of

dependent processes that communicate via network message

passing, as is the case for complex applications like browsers

and video/audio.

Multi-dimensions: This heuristic uses a predefined map

that stores the essential resources per application’s perfor-

mance based on our common observation of the applications.

Then, it will prioritize the foreground application in all re-

sources necessary to its performance. After that, if there

are any remaining resources that are not assigned to the

foreground application, it will assign them to the important

applications to the user. These important applications are

also stored in a hash map defined by asking the user in the

beginning. The intent is to examine the case where the fore-

ground application may have variance in its resource needs

while competing with applications that may have resource

needs in different dimensions.

51



SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems APSys ’21, August 24–25, 2021, Hong Kong, China

Figure 2: Foreground app contends with a resource-
intensive background app.

4.1 Foreground contends with
resource-intensive background

In this experiment, we set up a scenario to observe how well

our SmartOS’ automated RL utilizes resources compared to

the aforementioned static prioritization schemes as well as

Linux’ base CFS scheduling algorithm. In this scenario, a

foreground application that should be given highest priority

for all resources to maximize user experience is forced to

compete with a resource-intensive background application

that is not as important to the user. Both the foreground

and runaway background applications are implemented as

stress applications that make intensive equal use of the CPU,

memory, and disk I/O, consuming the same resources on the

same core in an Ubuntu 20.04 virtual machine with 8 GB of

memory, one processor, and 50 GB VDI disk drive.

In Figure 2, the blue and orange bars are showing the

performance of the foreground application and background

application correspondingly proportional to base Linux over

60 seconds of execution. As we can see, base CFS-based Linux

gives equal priority to both the foreground and background,

so that the foreground application is not able to make as

much progress as in other policies. In contrast, for each of the

heuristic static prioritization policies, the foreground is able

to run at twice the ops/sec rate of the base Linux case, while

the background application is appropriately given scant re-

sources. Similarly, SmartOS’ user-adaptive RL strategy is

able to learn the correct policy and converge to the same

actions, prioritizing the foreground application.

4.2 Foreground underperforms due to a
dependent application

In this experiment, a stress app runs as a foreground app that

consumes CPU, memory, and disk I/O and is communicating

through blocking pipes with another process that is also a

Figure 3: Foreground underperforming due to a depen-
dent application.

stress app and is intensive in consuming the same resources

as the foreground application. We are also running a third

runaway application which is additionally intensive in CPU,

memory, and disk I/O usage. All of these are running on the

same core. Hence, these three applications are competing

on attaining CPU, memory, and disk I/O. We can instantly

see in Figure 3 how the Fg only heuristic does not achieve

good performance as it only changes the priority of the fore-

ground app to high priority and leaves the background app

unchanged. Thus, the foreground app, which is messaging

through pipes with the background app, will remain in the

blocking stage for a significant portion of its execution time,

making the CPU available to the runaway application, result-

ing in an undesired resource allocation, which leads to user

frustration. The same also happens with the Fg+Video/Audio

and Multi-dimension heuristics. The only successful heuris-

tics in this experiment are the Fg+dependent static policy

and SmartOS, which are able to converge to the best resource

allocation decision.

4.3 Multiple important applications with
needs in separate dimensions

Sometimes the performance of other applications besides the

foreground application is also crucial for enhancing the user

experience. An example for this scenario would be when a

user is working inside a document editing application, but

is also monitoring a stock widget on their laptop screen,

or listening to music. The stock widget or music is not a

foreground application, but its performance is important

to the user. Suppose the other applications critical to the

user are consuming different kinds of resources from the

foreground application. In that case, the priority for all re-

sources should not be given to the foreground application. In

order to test such a scenario, we used a VM with four cores,

3 GB of RAM, and 50 GB of VDI hard disk with installed

52



APSys ’21, August 24–25, 2021, Hong Kong, China Goodarzy, et al.

Figure 4: Multiple important applications with re-
source needs in separate dimensions.

Ubuntu 20.04. We ran a stress app that is CPU intensive as a

foreground application on core one and two, and memory-

intensive applications on cores 2 and 3, respectively. One of

the memory-intensive applications plays an important factor

in the user experience, and the other one is a runaway ap-

plication. As all applications are running on different cores,

they are not competing for more computation. As a result,

giving more priority to the foreground application will not

affect its performance. Thus the Fg only, Fg+ Video/Audio,

and Fg+Dependent static prioritization policies will not im-

prove the user experience. However, the multi-dimensional

heuristic is able to achieve a better user experience as it only

gives priority in CPU to the foreground application and gives

more priority in memory to the critical background applica-

tion. The two memory-intensive applications compete over

the memory since they can not be fit simultaneously in the

memory and should be swapped out to disk space. As a result,

giving more memory priority to the critical application can

enrich the user experience because it prevents swapping out

of the critical application. As we can see in Figure 4, we can

also observe the same result. SmartOS is able to learn and

also reach the same performance as the multi-dimensional

static prioritization approach.

4.4 Variation of dimensions
We next constructed an experiment with random assign-

ments of the importance of various applications and their

resource needs. A random generator first randomly chose

CPU as the resource needed for a stress application running

as a foreground application on core one. It also randomly

chose CPU for the second stress application competing with

the foreground running on the same core. After that, the

random generator chose memory as the resource needed for

applications three and four. These two memory-intensive

Figure 5: Variation of dimensions.

applications are running on core two and core three com-

peting over memory. One of these two applications’ per-

formance is critical to the user experience quality, and an-

other one is a runaway application. Figure 5 shows that the

static multi-dimensional heuristic is unable to allocate re-

sources efficiently, because it assigns memory as the resource

needed for the foreground application and the second appli-

cation and CPU as the resource required for the third and

the fourth applications, which differs from what these ap-

plications currently need as defined by random assignment.

The other three heuristics, Fg only, Fg+Video/Audio, and

Fg+dependent, successfully improve the foreground applica-

tion, but they don’t change the critical application’s perfor-

mance. Only SmartOS is able to successfully enhance both

the foreground and the critical application’s performance.

Table 1: Different Reinforce Learningmethods conver-
gence in a dynamic setting.

RL Algorithm Feedbacks# Episodes#

DQN [18] 52000 13000

QLearning [22] 28400 7100

Sarsa [20] 3680 920

Double Qlearning [7] 2400 600

A2C [17] 1600 400

Monte Carlo [21] 400 100

53



SmartOS: Towards Automated Learning and User-Adaptive Resource Allocation in Operating Systems APSys ’21, August 24–25, 2021, Hong Kong, China

4.5 SmartOS dynamicity and convergence
We next examine how quickly SmartOS can adapt and con-

verge to appropriate resource allocations based on user feed-

back. We designed an experiment that combined all the pre-

vious experiments. In other words, we execute a script that

runs all the applications in Section 4.1 for 60 seconds. Mean-

while, SmartOS applies a resource allocation policy and asks

the script for its feedback. After 60 seconds, the script closes

all the running applications in Section 4.1 and starts all the

applications in Sec 4.2 for 60 seconds, etc. This same proce-

dure is applied then to the applications in Section 4.3 and

Section 4.4. Each repetition of Section 4.1 to Section 4.4 is

called an Episode. After an episode completes, we repeat the

process all over again with a new episode. Table 1 shows

the number of feedbacks required for each reinforcement

learning algorithm to find the best collection of policies. We

found Monte Carlo to converge most rapidly compared with

other reinforcement learning algorithms.

Figure 6: Convergence of Monte Carlo in a dynamic
setting (each episode consists of 4 feedbacks).

Figure 6 provides a detailed temporal perspective of how

SmartOS can achieve the best set of policies and a maximum

reward of 4 (one for each distinguished experiment) after

receiving 400 feedbacks using the Monte Carlo method in

100 episodes. We see that there is rapid convergence early

in the learning process. Note what is pictured is a smoothed

average over 10 episodes. Though episode 100 appears not

to achieve the maximum award, namely full convergence of

4, the unsmoothed value attained a value of 4 so that Monte

Carlo reached full convergence by episode 100. While this ex-

periment combined many iterations of different application

scenarios, we note that for just a single application scenario

of the foreground application only considered in section 4.1,

convergence was achieved in just 8 steps.

We used the Monte Carlo implementation of RL in the

SmartOS Cortex as a basis for performance measurements.

SmartOS adapted to each user feedback in 0.218 ms of total

execution time, of which 0.21 ms of that time consisted of

purely CPU execution, and the rest contains context switch

time. These results seem to be reasonably responsive to user

feedback without excessively burdening Linux, given that

time scales for human adaptation are on the order of seconds.

Also, the required memory to run the Cortex application was

23.1 MB.

5 DISCUSSION & FUTUREWORK
We desire to focus on the following future work areas:

Real-world SmartOS - SmartOS needs to be tested under

realistic use cases, i.e., working with several typical appli-

cations. We plan to conduct a user study to show how it

will impact the user experience interacting with the OS and

applications. Besides, we are planning to collect implicit feed-

back like pressing keyboard keys abnormally from real users

in the human study to experiment with how well SmartOS

can adapt according to user behavior. We plan to conduct

IRB-approved human user studies with SmartOS, continuous-

valued vector and state evaluation, and incorporate more

complex user context.

SmartOS Performance- SmartOS should be able to per-

form equally or better than native Linux, for example, CFS

for scheduling. Thus, using the collected feedback, SmartOS

needs to realize when to gracefully degrade to the native

CFS scheduler in case of failures resulting from RL algorithm

decisions.

Cross-platform SmartOS- It should be noted that Smar-

tOS can perform cross-platform. Its cortex can be placed

somewhere in the cloud or edge cloud and talk to its RL

agents to adjust necessary parameters. So, this enables Smar-

tOS to gather data from someone’s mobile, desktop, etc., at

the same time and then make decisions. Cloud-based flexi-

bility could also enable aggregated learning across users.

6 CONCLUSIONS
We presented SmartOS, a learning-based operating system

that implements reinforcement learning to automatically

adjust allocation of memory, CPU, I/O, and network band-

width according to learned user preferences. SmartOS is

implemented in Linux user space, and our test results show

SmartOS is able to automatically adapt to increasingly com-

plex allocation scenarios unlike static prioritization policies.

We also showed a Monte Carlo RL algorithm achieved the

fastest convergence in terms of its learning rate, and that its

overhead was on the order of tenths of milliseconds.

7 ACKNOWLEDGEMENT
This research was supported in part by VMware and the NSF

as part of SDI-CSCS award number 1700527, and by the NSF

as part of CAREER award number 1652698.

54



APSys ’21, August 24–25, 2021, Hong Kong, China Goodarzy, et al.

REFERENCES
[1] [n.d.]. Completely Fair Scheduler. Retrieved July 14, 2021 from https:

//man7.org/linux/man-pages/man7/sched.7.html

[2] [n.d.]. Python 3.6.0. Retrieved May 26, 2021 from https://www.python.

org/downloads/release/python-360/

[3] Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. 2020. KMLIB:

TowardsMachine Learning for Operating Systems. In Proceedings of the
On-Device Intelligence Workshop, co-located with the MLSys Conference.
1–6.

[4] Siddharth Dias, Sidharth Naik, Sreepraneeth K, Sumedha Raman, and

Namratha M. 2017. A Machine Learning Approach for Improving

Process Scheduling: A Survey. International Journal of Computer Trends
and Technology (IJCTT) 43, 1 (2017), 1–4. https://doi.org/10.14445/

22312803/IJCTT-V43P101

[5] Sepideh Goodarzy, Maziyar Nazari, Richard Han, Eric Keller, and

Eric Rozner. 2020. Resource Management in Cloud Computing Us-

ing Machine Learning: A Survey. In 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA). 811–816.
https://doi.org/10.1109/ICMLA51294.2020.00132

[6] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf

Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian

Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,

Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-

dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre

Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[7] Hado Hasselt. 2010. Double Q-learning. In Advances in Neural
Information Processing Systems, J. Lafferty, C. Williams, J. Shawe-

Taylor, R. Zemel, and A. Culotta (Eds.), Vol. 23. Curran As-

sociates, Inc. https://proceedings.neurips.cc/paper/2010/file/

091d584fced301b442654dd8c23b3fc9-Paper.pdf

[8] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi

Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg

Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,

Szymon Sidor, and Yuhuai Wu. 2018. Stable Baselines. https://github.

com/hill-a/stable-baselines.

[9] Henry Hoffmann. 2015. Jouleguard: Energy guarantees for approxi-

mate applications. In Proceedings of the 25th Symposium on Operating
Systems Principles. 198–214.

[10] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,

Anant Agarwal, and Martin Rinard. 2011. Dynamic knobs for respon-

sive power-aware computing. ACM SIGARCH computer architecture
news 39, 1 (2011), 199–212.

[11] Julian Kunkel, Michaela Zimmer, and Eugen Betke. 2015. Predicting

Performance of Non-contiguous I/O with Machine Learning. In High
Performance Computing, Julian M. Kunkel and Thomas Ludwig (Eds.).

Springer International Publishing, Cham, 257–273.

[12] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei Pan, Liang Shi,

Tei-Wei Kuo, and Chun JasonXue. 2020. Acclaim: AdaptiveMemory Re-

claim to Improve User Experience in Android Systems. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association,

897–910. https://www.usenix.org/conference/atc20/presentation/

liang-yu

[13] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien

Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade

of Wasted Cores. In Proceedings of the Eleventh European Conference
on Computer Systems (London, United Kingdom) (EuroSys ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 1,

16 pages. https://doi.org/10.1145/2901318.2901326

[14] Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert

Latham, Robert Ross, Shane Snyder, and Stefan M. Wild. 2018. Ma-

chine Learning Based Parallel I/O Predictive Modeling: A Case Study

on Lustre File Systems. In High Performance Computing, Rio Yokota,
Michèle Weiland, David Keyes, and Carsten Trinitis (Eds.). Springer

International Publishing, Cham, 184–204.

[15] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,

Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,

William C Evans, Steve Gribble, et al. 2019. Snap: A microkernel

approach to host networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles. 399–413.

[16] Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann.

2018. Caloree: Learning control for predictable latency and low energy.

ACM SIGPLAN Notices 53, 2 (2018), 184–198.
[17] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex

Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray

Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement

learning. In International conference on machine learning. PMLR, 1928–

1937.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
(2013).

[19] Atul Negi and P. Kishore Kumar. 2005. Applying Machine Learning

Techniques to Improve Linux Process Scheduling. In TENCON 2005 -
2005 IEEE Region 10 Conference. 1–6. https://doi.org/10.1109/TENCON.

2005.300837

[20] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning
using connectionist systems. Vol. 37. University of Cambridge, Depart-

ment of Engineering Cambridge, UK.

[21] David Silver. 2015. Lectures on Reinforcement Learning. url: https:

//www.davidsilver.uk/teaching/.

[22] CJC Watkins. 1989. H. Learning from Delayed Rewards, Ph. D. Thesis,

Cambridge University, 1989. (1989).

55

https://man7.org/linux/man-pages/man7/sched.7.html
https://man7.org/linux/man-pages/man7/sched.7.html
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-360/
https://doi.org/10.14445/22312803/IJCTT-V43P101
https://doi.org/10.14445/22312803/IJCTT-V43P101
https://doi.org/10.1109/ICMLA51294.2020.00132
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1109/TENCON.2005.300837
https://doi.org/10.1109/TENCON.2005.300837
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

	Abstract
	1 Introduction
	2 Overview
	3 Prototype
	4 Evaluation
	4.1 Foreground contends with resource-intensive background
	4.2 Foreground underperforms due to a dependent application
	4.3 Multiple important applications with needs in separate dimensions
	4.4 Variation of dimensions
	4.5 SmartOS dynamicity and convergence

	5 Discussion & Future Work
	6 Conclusions
	7 Acknowledgement
	References

