
Simple Opportunistic Routing Protocol for
Wireless Mesh Networks

Eric Rozner, Jayesh Seshadri, Yogita Mehta, and Lili Qiu
{erozner,jayeshs,yamehta,lili}@cs.utexas.edu

The University of Texas at Austin

Abstract— Multihop wireless mesh networks are becoming a
new attractive communication paradigm. Many cities and public
places have deployed or are planning to deploy mesh networksto
provide Internet access to residents and local businesses.Routing
protocol design is critical to the performance and reliability of
wireless mesh networks. Traditional routing protocols send traffic
along pre-determined paths and have been shown ineffectivein
coping with unreliable and unpredictable wireless medium.In
this paper, we develop a Simple Opportunistic Adaptive Routing
protocol (SOAR) for wireless mesh networks. SOAR maximizes
the progress each packet makes by using priority-based timers
to ensure that the most preferred node forwards the packet
with little coordination overhead. Moreover, SOAR minimizes
resource consumption and duplicate transmissions by judiciously
selecting forwarding nodes to prevent routes from diverging. To
further protect against packet losses, SOAR uses local recovery
to retransmit a packet when an ACK is not received within
a specified time. SOAR uses a combination of selective ACKs,
piggyback ACKs, and ACK compression to protect against ACK
loss while minimizing ACK overhead. We evaluate SOAR using
NS-2 simulations. Our preliminary results show that SOAR
is promising to achieve high efficiency and effectively support
multiple simultaneous flows.

I. I NTRODUCTION

Wireless mesh networks are becoming a new attractive
communication paradigm owing to their low cost and rapid
deployment. Routing is critical to the performance and reli-
ability of mesh networks. In this paper, we present a novel
routing protocol, called Simple Opportunistic Adaptive Rout-
ing (SOAR), for wireless mesh networks.

A. Benefits of Opportunistic Routing

A natural approach to routing traffic in wireless mesh net-
works is to adopt shortest path routing schemes as in wireline
networks. These schemes select a shortest path (according
to some metric) for each source-destination pair and send
traffic along the pre-determined path. Most of the existing
routing protocols, such as DSR [5], AODV [8], DSDV [7],
and LQSR [3], fall into this category. They are also referred
to as traditional routing.

Recently, researchers have proposed opportunistic routing
for mesh networks. Opportunistic routing differs from tradi-
tional routing in that it exploits the broadcast nature of wireless
medium and defers route selection after packet transmissions.
This can cope well with unreliable and unpredictable wireless
links. There are two major benefits in opportunistic routing.

First, opportunistic routing can combine multiple weak links
into one strong link. For example, consider a source that has

20% delivery rate to each of its five neighbors, and each of
these neighbors have 100% delivery rate to the destination.
Under a traditional routing protocol, we have to pick one of
the five intermediate nodes as the relay node, and cannot take
advantage of a transmission that reaches the nodes other than
the selected relay node. So altogether we need 5 transmissions
on average to send a packet from the source to the relay node,
and 1 transmission from the relay node to the destination. In
comparison, under opportunistic routing, we can treat the five
intermediate nodes as one unit that cooperatively forwardsthe
packet to the destination. The combined link has a success
rate of 1 − (1 − 0.2)5 = 0.672. Therefore, on average only
1/0.67=1.487 transmissions are required to deliver 1 packet
to at least one of the five intermediate nodes, and another
transmission is required for an intermediate node to forward.
Altogether it takes only 2.487 transmissions to deliver the
packet end-to-end, thereby achieving 2.4 times the throughput
of traditional routing.

Second, a traditional routing protocol has to trade off
between link quality and the amount of progress each trans-
mission makes. For example, consider a linear topology where
A sends data toD along the pathA−B−C−D and loss rate
increases with distance. IfB is used as the next hop, then the
quality of link A−B is good, and no retransmission is required
to deliver the packet toB. But the progress made is small.
Alternatively, if C is chosen as the next hop, a large progress
is made if the packet reachesC. However since the quality
of link A − C is poor, multiple transmissions are required to
deliver the packet toC. In comparison, opportunistic routing
does not commit toB or C before transmissions. Among the
nodes that receive the packet, we choose the one closest to the
destination to forward. In this way, we can opportunistically
leverage transmissions that are either unexpectedly shortor
unexpectedly long, thereby achieving high throughput.

B. Challenges for Opportunistic Routing

The major challenge in opportunistic routing is to maximize
the progress of each transmission without causing duplicate
transmissions or incurring significant coordination overhead.
In order to realize the potential benefits of opportunistic trans-
missions in real networks, a practical opportunistic routing
protocol should achieve the following design goals:

• Efficient: It should achieve significant performance im-
provement over traditional routing.

• Flexible: The protocol should support diverse traffic pat-
terns, including multiple simultaneous flows.

C. Prior Work

ExOR [1] is the seminal opportunistic routing protocol. In
ExOR, a sender broadcasts a batch of packets (10-100 packets
per batch). Each packet contains a list of nodes that can
potentially forward it. In order to maximize the progress each
transmission makes, the forwarding nodes relay data packets
in the order of their proximity to the destination, as measured
using ETX [2]. To minimize redundant transmissions, ExOR
uses a batch map that records which packets each node has
received; every forwarding node only forwards data that has
not been acknowledged by the nodes closer to the destination
in their batch maps.

ExOR provides significant throughput improvement over
traditional routing and achieves the first design goal. In
particular, it offers throughput gains of 35% over one and
two hop connections, and a gain of a factor of 2-4 for more
distant pairs. On the other hand, ExOR cannot support multiple
simultaneous flows, which is common in mesh networks. This
limits its practical use in real mesh networks.

D. Our Approach

To this end, we develop a simple opportunistic adap-
tive routing protocol (SOAR) towards achieving the above
two design goals. To take advantage of transmissions that
reach nodes other than the next-hop, we introduce a novel
mechanism called priority-based forwarding. Priority-based
forwarding maximizes the progress each packet makes by
choosing the node closest to the destination to forward the
packet. Different priorities are realized by using priority-based
timers: the node with highest priority performs forwarding
first, and other nodes hearing the transmission automatically
cancel their transmissions, thereby minimizing the numberof
duplicate transmissions in a cheap and distributed way. To
make priority-based timers work, all the forwarding nodes
should hear each other with a high probability. To ensure this
condition, we judiciously select forwarding nodes to avoid
diverging routes. To further protect against packet losses,
SOAR uses local recovery to retransmit a packet when an
ACK is not received within a specified time period. SOAR uses
selective ACKs to protect against ACK losses and minimize
unnecessary retransmissions, and uses piggyback ACKs and
ACK compression to reduce ACK overhead.

To demonstrate its effectiveness and feasibility, we imple-
ment SOAR in the NS-2 simulator [6]. Our preliminary results
show that SOAR is promising to achieve both efficiency and
flexibility in wireless mesh networks.

E. Paper Outline

The rest of the paper is organized as follows. We describe
SOAR protocol in Section II. We present our preliminary
evaluation of SOAR using NS-2 simulations in Section III.
We conclude in Section IV.

II. SIMPLE OPPORTUNISTICADAPTIVE ROUTING

PROTOCOL (SOAR)

In this section, we first give an overview of SOAR and then
describe the protocol details.

A. Overview

The major challenge in opportunistic routing is to maximize
the progress of each transmission while minimizing duplicate
transmissions and coordination overhead. To achieve this goal,
a sender in SOAR selects a shortest path to forward the packet
towards the destination. As described in Section I-A, routing
strictly along the shortest path is not efficient under unreliable
and unpredictable wireless links. Therefore, we introducea
novel mechanism called priority-based forwarding to take
advantage of path diversity.

Specifically, in SOAR a sender broadcasts a data packet that
includes an ordered list of forwarding nodes. Upon hearing
the transmission, the nodes not on the forwarding list simply
discard the packet. Nodes on the forwarding list store the
packet and set timers based on their priorities. A node with
higher priority uses a smaller timer so that its timer expires
earlier; once the timer expires, the node forwards the packet.
Other nodes, upon hearing the transmission, will remove the
corresponding packet from their queues to avoid duplicate
transmissions.

SOAR relaxes the actual route that data traverses to be along
or near the shortest path. Different from traditional routing,
SOAR leverages path diversity by using more flexible routes:
nodes other than the next hop can forward the data. Different
from ExOR, in SOAR the nodes involved in routing a packet
are constrained to be near the shortest path, as shown in
Figure 1. This prevents routes from diverging and minimizes
duplicate transmissions. Moreover, this also simplifies coordi-
nation since all the nodes involved are close to nodes on the
shortest path and can hear each other with a reasonably high
probability. Therefore, we can use overheard transmissions to
coordinate with each other in a cheap and distributed way.

A B

Fig. 1. The actual route in SOAR involves nodes on or near the shortest
path. In the figure, the nodes in the shaded region participate in forwarding
packets from A to B.

B. Shortest Path Selection

A senderS selects a shortest path to route towards destina-
tion D. There are several routing metrics that we could use to
select the shortest path. We use the ETX metric, a state-of-the-
art routing metric proposed by De Coutoet al. [2]. A link’s
ETX metric measures the expected number of transmissions
(including retransmissions) required to send a unicast packet
across the link. Letpf and pr denote the loss probability of
the link in the forward and reverse directions, respectively.
Each node measures loss rate of its links to and from its
neighbors (i.e., pf andpr) by broadcasting one probe packet
every second and counting the number of probes received in
the last 10 seconds. Then, the link’s ETX metric is calculated

as 1
(1−pf)×(1−pr) , assuming independent packet losses. Each

node maintains an exponentially weighted moving average of
ETX samples. The shortest path fromS to D is the path with
smallest ETX.

C. Priority-based Forwarding

We use the following priority-based forwarding to maximize
the progress each transmission makes. A sender transmits a
packet, which specifies a list of forwarding nodes in an in-
creasing order of ETX towards destination. Each node hearing
the packet first checks if it is included in the forwarding list.
If not, it discards the packet. Otherwise, it sets forwarding
timer proportional to its position in the forwarding list. So
the node with lower ETX towards the destination forwards
the packet earlier, and other nodes hearing its forwarding will
cancel their forwarding timer and remove the packet from their
queues, thereby avoiding duplicate forwarding.

Our priority-based forwarding has some similarity with the
MAC-layer anycast mechanism proposed in [4]. In [4], the
sender sends a RTS, and multiple receivers respond to the RTS
in the order of their proximity to the destination. Among those
that receive the RTS, the one closest to the destination sends
the CTS first, and becomes selected to receive the subsequent
data packet. Different from [4], we directly maximize the
progress of data packets by only selecting the node that re-
ceives the data packet to forward, whereas in [4] the reception
of RTS does not guarantee reception of the subsequent data
packet. Moreover, SOAR is a protocol at the network-layer,
which is very different from MAC-layer anycast in [4].

Next we address the following important issues in priority-
based forwarding: (i) how to select forwarding nodes? and (ii)
when to forward?

forwardList = ();
if i is on the shortest path to the destination

for each nodej in the topology
if (ETX(j, dest) < ETX(i, dest) andETX′(i, j) < threshold)

add j to forwardList
end

end
// further prune the forwarding list to ensure their ETX’ to each
// other are withinthreshold

forwardList = Prune(forwardList, threshold);
else // i is not on shortest path

find j such that its ETX’ to i is smallest among all nodes in shortest path
if ETX(j, dest) < ETX(i, dest)

add j to forwardList
end
foreach node k in j’s forwardList

if (ETX(k, dest) < ETX(i, dest) andETX′(i, k) < threshold)
add k to forwardList

end
end

end

Fig. 2. Selection of forwarding nodes at nodei, whereETX′(i, j) is the
ETX metric on link i-j, andETX(i, j) is the shortest path from i to j in
terms of ETX metric.

1) Forwarding node selection:Figure 2 shows the pseudo-
code we use to select forwarding nodes. As it shows, if a
nodei is on the shortest path,i selects the forwarding nodes
that satisfy the following three conditions: (i) the forwarding
node’s ETX to the destination is lower thani’s ETX to the
destination, and (ii) the forwarding node’s ETX’ toi is within a

threshold, and (iii) the ETX’ between any pair of forwarding
nodes is within a threshold. The first constraint ensures the
packet makes progress, and the second and third constraints
ensure that the link quality betweeni and its forwarding node
j or between any two forwarding nodes is reasonably good so
that they can hear each other’s forwarding and avoid duplicate
transmissions.

A

B1 B2 B3

C1 C2 C3 C4 C5 C6

F

D1 D2 D11 D12

Fig. 3. Careful forwarding node selection is necessary to prevent routes from
diverging.

SOAR also allows nodes not on the shortest path to forward
packets. How should these nodes select forwarding nodes?
One possibility is to select the forwarding nodes in the same
way as the nodes on the shortest path (described above). How-
ever this is not desirable since this could result in diverging
forwarding paths and duplicate transmissions. For example, in
Figure 3 nodeA wants to send traffic to nodeF . A selects
B1, B2, andB3 as forwarding nodes;B1 selectsC1, C2, C3,
C4 as forwarding nodes, whileB3 selectsC3, C4, C5, C6 as
forwarding nodes. Then ifB1 andB3 do not hear each other’s
forwarding of a packet (due to some packet losses between
B1 andB3), they each forward a copy of packet, and thus the
packet may be forwarded on toC1, C2, C3, C4, C5, andC6.
SinceC1 is far away fromC6 and do not hear each other, these
two nodes further perform duplicate forwarding and the paths
will further diverge and yield many redundant transmissions.
Therefore selecting forwarding nodes just to ensure the packet
makes progress is not sufficient and we should also prevent
routes from diverging to minimize redundant transmissions.
Preventing diverging routes is especially important for sup-
porting multiple simultaneous flows.

To avoid diverging paths, the nodes not on the shortest path
use the following method to select their forwarding list. Let
i be the node not on the shortest path. Among all nodes on
the shortest path,i finds the one that has smallest ETX’ to
i, and denotes this node asj. i first addsj to its candidate
forwarding list if j is closer to the destination than itself.
In addition, i adds a node fromj’s forwarding list (denoted
as k) as its own candidate forwarding node ifk satisfies the
following two conditions: (i)k is closer to the destination than
i (i.e., ETX(i, dest) > ETX(k, dest)), and (ii) k has good
connectivity withi (i.e., ETX ′(i, k) < threshold). Applying
this idea to the example in Figure 3, we observe that even
when B1 and B3 perform duplicate forwarding, since their
forwarding lists only haveC3 andC4, the routes do not further
diverge, thereby minimizing duplicated forwarding.

2) Forwarding time:A sender sorts the forwarding nodes in
an increasing order of their ETX towards the destination. The
i-th forwarding node on the list sets its forwarding timer to

(i−1)∗δ, wherei starts from 1,δ is the time it takes to wait and
transmit the data (including the waiting time for all the packets
queued before it in the wireless card to finish transmission).
We set δ = 45 ms. It is easy to see the maximum time
it takes for the forwarding ismaxForwardT ime = δ ∗
(numForward − 1). To limit the delay variance and reduce
overhead, we limit the maximum number of forwarding nodes
to 5.

D. Local Recovery

When a node transmits a packet, if at least one of the
forwarding nodes specified in the header receives the packet,
the packet makes progress towards the destination. If none
of the forwarding nodes receive the packet, the packet should
be retransmitted. SOAR uses hop-by-hop network-layer ACKs
to provide reliability. When an ACK is not received within
a retransmission timeout, the packet is assumed to be lost
and should be retransmitted. Each node retransmits a packet
up to maxRetries, which is set to 3 in our evaluation. So
essentially each sender (including an intermediate forwarder)
tries to ensure its transmission is received by at least one node
in its forwarding list and retransmits the packet if necessary
up to maxRetries. So SOAR provides best effort reliability
(similar to IEEE 802.11 link-layer retransmissions thoughat
the network layer), and applications that demand end-to-end
full reliability can further use upper-layer protocols (e.g., TCP
or application-layer support) to provide a reliability guarantee.

SOAR uses selective ACKs to protect against ACK losses;
meanwhile it also uses piggyback ACKs and ACK compres-
sion to reduce ACK overhead. Below we elaborate each of
these schemes.

1) Using selective ACKs to protect ACK losses:Loss of
ACKs is costly, since it results in unnecessary retransmissions.
To minimize the effect of an ACK losses, we useselective
ACKs to acknowledge all recently received packets. Using
selective ACKs reduces the effect of ACK losses, since even
if an ACK for packet i is lost, the subsequent ACKs still
convey that packeti is received so that the packet will not be
retransmitted unnecessarily.

The selective ACK contains two fields: (i) the starting
sequence number of the out of order ACKs (start), and (ii)
a bit-map of out of order ACKs (Our implementation uses a
fixed length bit-map with 256 bits, i.e., 32 bytes). Figure 4
shows how we update the fields. All the packets up tostart
are assumed to be received, andi-th position in the bitmap is
1 if and only if start + i-th packet is received.

One caveat is that it is possible that the difference between
the largest and smallest sequence numbers of the lost packets
is above 256. One way to handle is to use a variable-size
bit-map and let the bit-map grow as large as necessary to
accommodate this range of sequence number difference. This
is not desirable since it may incur significant overhead due
to large ACK size and it is even possible to grow the packet
over MTU. Our implementation always limits the size of the
bit-map to be within 256 bits as follows. We updatestart so
that the largest received packet is no more thanstart + 256.
This implies that we may not have received all packets up

to start even though we assume so. The likelihood of such
occurrence is low since 256 is quite a large range. Moreover,
SOAR is designed to provide best-effort reliability and leaves
the upper-layer to ensure full reliability if needed.

if(recvPktSeq ≤ start)
no op;

else if (recvPktSeq = start + 1)
start = start + 1;
shift bitmap left by 1;

else if (recvPktSeq < start + 256)
set bitmap(recvPktSeq-start) to 1;

else
shift bitmap left by(recvPktSeq − start − 256);
start = recvPktSeq − 256 ;

end

Fig. 4. Update selective ACK.

2) Using piggyback ACKs and ACK compression to reduce
ACK overhead:SOAR uses piggyback ACKs and ACK com-
pression to reduce the overhead of acknowledgements.

More specifically, SOAR piggybacks ACKs to data packets
so that each data packet carries information about which
set of packets have been recently received. We generate a
piggybacked ACK just before the data packet is sent to the
wireless card, thereby allowing ACKs to carry the latest
information about which packets have been received. Each
node that receives the packet checks if any of the packets in
its queue have been ACKed by a higher-priority node. If so, it
removes the packet from its queue and cancels its forwarding
timer for the packet.

Piggyback ACKs are especially effective when there are
enough data packets to transmit. When a node does not have
much data to send, it should also send stand-alone ACKs
to provide timely feedback. Stand-alone ACKs have higher
priority than data packets, and are inserted in the front of
queue before data packets. Our evaluation shows that sending
one ACK for every packet yields significant overhead, and may
reduce throughput on a reliable link. To reduce such overhead,
we use the followingACK compression. We schedule an ACK
either whenK new data packets have been received or an
ACK timer expires. As a further optimization, before the ACK
is sent to the wireless card, if another data packet coming
from the same flow arrives and is within K packets away
from the ACK, we cancel the stand-alone ACK and piggyback
the ACK to that data packet. We use ACK timer of 30 ms
and K = 2 in our evaluation. Our results show that the
combination of piggyback ACKs and ACK compression is
effective in reducing overhead.

E. Rate Control

To improve network utilization, SOAR uses a sliding-
window protocol to allow multiple packets outstanding. The
difference in delay between two forwarding nodes with con-
secutive priorities, denoted asδ, depends on the number of
outstanding packets. This is becauseδ should be set large
enough so that the packet transmitted by a higher-priority
node still proceeds the transmission from a lower priority
node even if the packet from the higher-priority node is at
the end of the current sliding window while the packet from
the lower-priority node is at the beginning of current sliding

window (e.g., when lower-priority node has low load). In
order to achieve low delay, we limit the maximum number
of outstanding data packets to 3 in our evaluation. This limit
also helps to make data packets carry up-to-date piggyback
ACKs. Note that ETX probe packets are not subject to this
limit to ensure timely delivery of the control packets.

III. PERFORMANCEEVALUATION

In this section, we present our evaluation methodology and
performance results.

A. Evaluation Methodology

Our evaluation is based on 802.11a and 6 Mbps medium bit
rate with RTS/CTS disabled. Disabled RTS/CTS is the default
setting in real networks. We generate CBR traffic with 6
Mbps data rates, which is high enough to saturate the wireless
links. We use the end-to-end goodput (i.e., total number of
non-duplicate received bits per second) over all flows as the
performance metric.

S

p

D

R1

Rn
p

100%

100%

Fig. 5. Diamond topology.

S DR1 RnR2

p1

p2

Fig. 6. Linear chain topology.

1) Network topologies:Our evaluation uses various net-
work topologies. We use diamond topologies, as shown in
Figure 5, to evaluate the capability of SOAR in combining
multiple weak links into a stronger link. We use linear-chain
topologies, as shown in Figure 6, to evaluate the effectiveness
of SOAR in opportunistically taking advantage of lucky long
transmissions. Finally we use grid topologies to evaluate the
performance of SOAR in more general topologies. We add
a packet dropping module at the MAC layer to introduce
controllable packet losses. The final link loss rate includes
both injected packet losses and packet collisions.

2) Baseline comparison:We use theETX-based shortest-
path routing protocolas a baseline comparison. We extend
DSDV in NS-2 (version 2.29) to support the ETX routing
metric as follows. Each node sends one broadcast probe per
second, and propagates the updated loss rates on all its links to
the rest of the network. Based on this information, each node
computes a shortest path to the destination using 1

(1−pf)(1−pr)

as a link weight, wherepf andpr are forward and reverse link
loss rates.

B. Evaluation Results

First we present performance results of a single flow over
diamond, linear-chain, and grid topologies. Then we evaluate
the performance of multiple flows.

1) Diamond topologies:Figure 7 compares the goodput of
SOAR and shortest path routing using diamond topologies, as
shown in Figure 5. The delivery rate from the source to each
intermediate node (denoted asp) is varied from 0.1 to 1, and
all the other links (including the links from the intermediate
nodes to the source) have delivery rate of 1.

We make the following observation. First, in all cases
SOAR outperforms the shortest path routing. The goodput
improvement ranges from 10.2% to 366.9% for 2 intermediate
nodes and ranges from 8% to 578.7% for 5 intermediate nodes.
Second, the percentage-wise improvement is largest whenp is
small. This is because the effect of combining multiple weak
links into a strong link is larger for weak links.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
o
o
d
p
u
t

(
K
b
p
s
)

p

SOAR
shortest path

(a) 2 intermediate nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
o
o
d
p
u
t

(
K
b
p
s
)

p

SOAR
shortest path

(b) 5 intermediate nodes

Fig. 7. Diamond topologies: vary the delivery rate from the source to each
intermediate node from 0 to 1 and fix the delivery rate of all other links to 1.

2) Linear-chain topologies: Next we use linear-chain
topologies to evaluate the effectiveness of SOAR in leveraging
lucky long transmissions. Letp1 denote the delivery rate of
one-hop links, andp2 denote the delivery rate of two-hop links.
In the case of asymmetric loss rates,p1 and p2 are both the
delivery rates of links in the forward direction, and the delivery
rates of the reverse direction are 1. In the case of symmetric
loss rates, the delivery rates in forward and reverse directions
are both

√
p1 for one-hop links, and are both

√
p2 for two-hop

links.
Figure 8 compares SOAR with the shortest path routing in

two-hop linear chain topologies, wherep1 is 1 andp2 varies
from 0 to 0.9. We observe SOAR significantly out-performs
the shortest path routing. The improvement is largest whenp2
has moderate delivery rate (around 0.5). This is because when
p2 is too low, there are few lucky long transmissions for SOAR
to take advantage of, and whenp2 is too high, the shortest

path routing also utilizes these long transmissions since the
ETX value over a direct two-hop link is lower than the sum
of ETX values over two one-hop links (i.e.,1/p2 < 2/p1).
In comparison, for a moderatep2, there are significant lucky
long transmissions, and the shortest path routing does not take
advantage of them.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
o
o
d
p
u
t

(
K
b
p
s
)

p2

SOAR
shortest path

(a) Asymmetric losses

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
o
o
d
p
u
t

(
K
b
p
s
)

p2

SOAR
shortest path

(b) Symmetric losses

Fig. 8. Two-hop linear chain topologies:p1 is 1 andp2 varies from 0 to
0.9.

Figure 9 evaluates SOAR using two-hop linear chain topolo-
gies, wherep1 varies from 0.6 to 1 andp2 is 0.5. As it shows,
SOAR improves goodput by 50.3% - 94.4% under asymmetric
losses, and by 88.0% - 126.6% under symmetric losses. The
larger improvement in symmetric losses is becausep2 is the
product of forward and reverse delivery rates, and for the
same value ofp2, the delivery rate in the forward direction is
higher under symmetric losses than asymmetric losses, thereby
providing more opportunities for packets to make progress
beyond one hop.

Figure 10 compares SOAR with the shortest path routing
under a varying number of hops between the source and
destination. Again SOAR consistently out-performs shortest
path routing.

3) Grid topologies: Now we compare SOAR with the
shortest-path routing using grid topologies. Figure 11 shows a
3*3 grid, where the delivery rate of solid links (i.e., linksover
one vertical/horizontal hop) isp1 and delivery rate of dashed
links (i.e., links over two vertical/horizontal hops or onediag-
onal hop) isp2. Figure 12 shows the goodput of a flow from
node 1 to node 9 in Figure 11 with varyingp2, and Figure 13
shows the goodput of the same flow in 3*3 grid topologies
with varying p1. We make the following observations. First,
SOAR can yield significant improvement. The improvement
is largest whenp2 is around 0.5, since SOAR can leverage a

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
o
o
d
p
u
t

(
K
b
p
s
)

p1

SOAR
shortest path

(a) Asymmetric losses

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
o
o
d
p
u
t

(
K
b
p
s
)

p1

SOAR
shortest path

(b) Symmetric losses

Fig. 9. Two-hop linear chain topologies:p2 is 0.5, andp1 varies from 0.6
to 1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8

G
o
o
d
p
u
t

(
K
b
p
s
)

hops

SOAR
shortest path

(a) Asymmetric losses

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8

G
o
o
d
p
u
t

(
K
b
p
s
)

hops

SOAR
shortest path

(b) Symmetric losses

Fig. 10. Linear chain topologies:p1 = 1, p2 = 0.5, and the number of
hops between the source and destination varies from 1 to 8.

significant number of lucky transmissions, which the shortest
path routing cannot. Second, we observe the shortest path
routing has a dip in its goodput. A closer look reveals that
it is because when there are multiple paths of similar ETX,
there is route flapping (at some time, one path is slightly better
than the other; at another time, the other path is slightly better).
In comparison, SOAR simultaneously utilizes multiple paths
and its performance is more stable.

1 2 3

4 5 6

7 8 9

Fig. 11. 3*3 grid topologies

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
o
o
d
p
u
t

(
K
b
p
s
)

p2

SOAR
shortest path

Fig. 12. 3*3 grid topologies:p1 is 1, andp2 varies from 0 to 0.9.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

G
o
o
d
p
u
t

(
K
b
p
s
)

p1

SOAR
shortest path

Fig. 13. 3*3 grid topologies:p1 varies from 0.6 to 1, andp2 is 0.5.

4) Multiple flows: So far we consider the performance of
a single-flow. Next we evaluate the performance of multiple
flows. Figure 14 shows the goodput of 2 and 4 parallel flows
in the grid topologies. We observe that SOAR significantly
out-performs shortest path routing. The improvement is largest
whenp2 is around 0.5 since SOAR leverages lucky long hops,
whereas the shortest path routing does not take advantage of.

IV. CONCLUSION

In this paper, we develop a novel opportunistic routing
protocol, called SOAR. It uses priority-based forwarding and

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
o
o
d
p
u
t

(
K
b
p
s
)

p2

SOAR
shortest path

(a) 2 parallel horizontal flows in 3*3 grids

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
o
o
d
p
u
t

(
K
b
p
s
)

p2

SOAR
shortest path

(b) 4 parallel horizontal flows in 3*7 grids

Fig. 14. Grid topologies: total goodput of parallel flows, wherep1 is 1 and
p2 varies from 0 to 0.9.

judicious forwarding node selection to maximize the progress
of each transmission with little coordination among the nodes.
It protects against packet losses using local recovery based
on selective ACKs, which are sent using either piggyback or
ACK compression. Our preliminary results show that SOAR
achieves significant improvement over traditional routingand
supports multiple simultaneous flows. To the best of our
knowledge, it is the first opportunistic routing protocol that
supports multiple flows. We are currently implementing SOAR
in our wireless testbed so that we can realize the potential of
opportunistic routing in real networks.

REFERENCES

[1] S. Biswas and R. Morris. ExOR: Opportunistic multi-hop routing for
wireless networks. InProc. of ACM SIGCOMM, Aug. 2005.

[2] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. InProc. of ACM MOBICOM,
Sept. 2003.

[3] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for
multi-hop wireless networks. InProc. of ACM SIGCOMM, Aug. 2004.

[4] S. Jain and S. Das. Exploiting path diversity in the link layer in wireless
ad hoc networks. InProc. of the 6th IEEE WoWMoM Symposium, Jun.
2005.

[5] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic source
routing protocol for multihop wireless ad hoc networks. InAd Hoc
Networking, 2001.

[6] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.
[7] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. InProc. of ACM
SIGCOMM, 1994.

[8] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector
routing. In Proc. of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, Feb. 1999.

