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Abstract—In the past, researchers designed, deployed, and
evaluated Wi-Fi based localization techniques in order to locate
users and devices without adding extra or costly infrastructure.
However, as infrastructure deployments change, one must re-
examine the role of Wi-Fi localization. Today, cameras are be-
coming increasingly deployed, and therefore this work examines
how contextual and vision data obtained from cameras can be
integrated with Wi-Fi localization techniques. We present an ap-
proach called CALM that works on commodity APs and cameras.
Our approach contains several contributions: a camera line fitting
technique to restrict the search space of candidate locations,
single AP and camera localization via a deprojection scheme
inspired from 3D cameras, simple and robust AP weighting that
analyzes the context of users via the camera, and a new virtual
camera methodology to scale analysis. We motivate our scheme
by analyzing real camera and AP topologies from a major vendor.
Our evaluation over 9 rooms and 102,300 wireless readings
shows CALM can obtain decimeter-level accuracy, improving
performance over previous Wi-Fi techniques like FTM by 2.7×
and SpotFi by 2.3×.

Index Terms—Wi-Fi, Localization

I. INTRODUCTION

Wireless localization is an important problem, as providing
indoor localization is extremely useful across many industry
verticals, from indoor navigation [1], to retail consumer an-
alytics [2], to more informed architectural engineering [3].
Wireless localization has gained significant research attention
in part because re-using pervasively deployed wireless APs
requires no new infrastructure to be installed [4]. Today,
however, currently deployed infrastructures commonly fea-
ture equipment beyond wireless APs. For example, network-
connected cameras have gained increasing prevalence. As
many wireless providers include camera offerings in their
portfolio [5], [6], [7], it’s natural to ask: how can today’s
infrastructure, consisting of co-deployed APs and cameras,
improve localization accuracy?

Retail stores, airports, city buildings, warehouses, and many
other buildings deploy cameras for a variety of reasons,
ranging from surveillance and security, to analytics, to pro-
ductivity analysis [8]. Cameras are integrated into the IT
infrastructure via wireless or wired links. Today, many cameras
feature onboard compute or can connect to an edge computing
deployment, enabling advanced analytics to be performed on
the live camera feed. Cameras are useful to localization for a
variety of reasons. First, the camera “sees” a human or object
within its view, giving valuable location information, such as

where the user resides in the frame. In addition, cameras also
obtain contextual information about subjects in the field-of-
view, such as their orientation or how they’ve moved over
time. But camera feeds on their own are useless without tools
to analyze images. Luckily, advances in deep learning have
achieved human-level accuracy in a variety of tasks, such as
object detection [9], object tracking [10], pose estimation [11],
orientation analysis [12], and more. Armed with such tools,
locating subjects and obtaining their context reveals valuable
information that can be combined with Wi-Fi readings to
enhance localization.

In this paper, we present a Camera-based, AP-integrated
Localization Mechanism (CALM) that combines AP and cam-
era readings to improve localization. A key challenge is to
combine data intelligently from the RF and visual domains. A
noisy reading from a wireless AP can reduce accuracy. CALM
combines limited, but highly accurate, location information
from monocular cameras with additional Wi-Fi localization
estimates to improve accuracy. CALM also utilizes contextual
information from cameras to further improve results.

A key design choice of CALM is simplicity. We build
CALM from known and well-understood techniques in order
to lower the bar for deployment. Systems that are easy to
understand are easier to manage, debug, and reason about in
practice. CALM is flexible: it can work with one or more
cameras or one or more APs, cameras need not be colocated
with APs, and the techniques presented in this paper can be
generalized to improve different types of wireless localization
(from angle of arrival, received signal strength, or time-of-
flight techniques). All techniques in this paper work with
commodity, off-the-shelf cameras and APs, increasing the
practicality of the solution. This paper shows the combina-
tion of vision and Wi-Fi based localization improves Wi-
Fi localization performance. CALM can be thought of as
an addition to localization frameworks: when cameras are
available CALM will improve performance, but when vision
information is unavailable localization can simply fall back to
wireless-based techniques. In summary, this paper makes the
following contributions:

• A characterization of deployments containing both cam-
eras and APs via a partnership with a major vendor who
offers both in their product line.

• A novel mechanism to perform highly-accurate single AP
localization (when the AP is colocated with a camera) in



a 3D coordinate space, with no constraints on the number
of AP antennas or antenna configuration. Our system
takes inspiration from deprojection techniques utilized in
3D cameras.

• A new camera-based trilateration technique to effectively
combine limited, but known, location information from a
camera with multiple AP readings. The camera contains
highly-accurate information about the user’s location,
which restricts the possible coordinates a user may reside.
This approach allows a camera to be located at an
arbitrary position.

• A simple and robust technique to weight different AP
readings by analyzing the context of the user in the
camera frame. A user’s orientation is used to intelligently
combine readings from wireless APs.

• A codebase, dataset, and evaluation that will be open-
sourced. Both 2D and 3D measurements are obtained over
9 rooms, halls, labs, and cafes with 102,300 total wireless
readings. Average localization accuracy improves over
techniques like FTM [13] and SpotFi [14] by 2.7× to
2.3× respectively, with some rooms showing up to 7.8×
improvement.

II. BACKGROUND

This section briefly provides background to our work. First,
various wireless localization techniques are discussed. Then
camera-based localization is overviewed. Finally, motivation
describing Wi-Fi and camera co-deployments is provided.
A more thorough analysis of related work is addressed in
Section V.

Wireless localization
Wireless localization can employ a variety of techniques.

For example, early approaches use received signal strength
(RSS) [4] to determine positioning but are typically prone
to high error because RSS is impacted by multipath and
attenuation. More recent approaches use an array of antennas
to obtain the angle-of-arrival (AoA) of a client’s signal [14].
When the client’s signal is obtained from multiple APs,
a location estimate can be inferred via triangulation. AoA
techniques place requirements on antenna configurations and
are also impacted by multipath: signals may bounce off walls
or other objects instead of directly traversing from the client to
the AP. Finally, other approaches utilize time-of-flight, such as
802.11 Fine Time Measurement (FTM), to measure RTTs and
infer distance from an AP [13]. With multiple AP readings,
trilateration can be used to pinpoint a client’s location.

This work mostly focuses on Wi-Fi localization provided by
FTM. FTM is standardized in 802.11mc, supported in Android
9 (and above), and is implemented by many device manufac-
turers [15]. Just as with previous localization techniques, FTM
performance can degrade in multipath settings [16], [17], and
thus multipath must be addressed when designing an accurate
technique. This paper primarily studies CALM with FTM, but
such coupling is not fundamental: Section IV presents results
with CALM integrated with AoA-based techniques.
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Fig. 1: Single camera lens ambiguity.

Camera localization
Today, most commercially available off-the-shelf cameras

contain a single lens (i.e., they are monocular cameras) [18]
and hence capture a 2-dimensional image. Consider the
checkerboard in Figure 1. One cannot infer if a small checker-
board is placed near the camera or if a large checkerboard
is placed farther away. Hence, an object’s depth information
cannot be inferred and a location estimate is difficult to
provide. One can, however, accurately infer the offset of the
checkerboard in the image (the red dotted line), in both the
vertical and horizontal directions.

Obtaining the offset for the checkerboard requires locating
the checkerboard in the image. Assuming human subjects
instead of checkerboards, an algorithm must be available to
locate the human within the 2D image. If the human is located,
the centroid of the human’s outline can serve as the offsets
on the image. Thankfully, object detection and segmentation
techniques that utilize deep learning can perform this task
quickly and accurately [9]. In Section III, we show how
this information helps infer location, but the main idea is
the object must appear along the offsets – the challenge is
finding the depth. Because object detection techniques are
highly accurate, the offset information is close to ground truth,
and thus important information regarding an object’s location
can be captured with high confidence.

Finally, depth information can be gleaned from cameras
with multiple lenses. These 3D cameras estimate the depth of
an object in an image and then output a location estimate using
offset and depth values. However, most cameras deployed
today do not support 3D technology, and commodity depth
cameras typically have short ranges within 8-10 meters [19].
CALM mostly focuses on monocular camera integration, but
we believe our scheme can also improve depth camera local-
ization (e.g., by extending the range of many depth cameras).

Co-location of Cameras and Wi-Fi Our work advocates for
co-utilizing cameras and APs in order to improve localization.
Several wireless AP enterprise vendors [5], [6], [7] provide
wireless-capable smart cameras, which allows cameras to
seamlessly deploy into wireless networks and could also easily
enable smart cameras with integrated Wi-Fi AP functionality
in the future. We partner with a major enterprise vendor that
includes both Wi-Fi cameras and Wi-Fi APs in their portfolio
and sample 1,000 networks containing at least eight cameras



and eight APs. Figure 2 shows a CDF of the ratio of APs
to cameras in these networks. A ratio of 1:1 implies equal
number of cameras and APs, and a ratio of 2:1 indicates APs
are twice as numerous as cameras in a given deployment. For
small networks (minimum 16 devices) the median ratio is 1.3,
which increases to 1.92 for medium-sized networks (minimum
50 devices) and 2.6 for large networks (minimum 100 devices).
The findings have numerous ramifications. First, this suggests
the co-location of APs and cameras is common in enterprise
deployments. Second, the median ratios are relatively low
(especially in smaller deployments), which motivates the need
for localization techniques that require only a single AP and
single camera. Third, there is a non-trivial amount of networks
that do have multiple APs deployed per camera, which is more
common in larger, more important customers. We use these
findings to motivate the design of CALM, which can work
with a single AP and camera, or multiple APs and a camera.
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Fig. 2: Co-location of APs and cameras.

III. DESIGN

This section overviews the design of CALM. First, an
algorithm is provided when there is a single AP colocated
with a single camera. Next, the problem is generalized when
multiple APs exist and the camera can be placed in an arbitrary
position. Finally, an optimization is provided that uses context
derived from the camera’s image to obtain a user’s orientation
and further improve localization.

A. Single AP and camera

When an AP and a camera are colocated, information from
each piece of equipment can be combined to unambiguously
infer an object’s location. The image a camera captures
consists of pixels. As seen in Figure 3, a specific pixel is
labeled within a pixel coordinate space as (u, v), where the
origin pixel (0, 0) is in the upper-left corner of the image.
An image captures a scene from the physical world, and thus
pixels within the image can be mapped to points in a 3D
space. These points, measured in meters, are represented as
P = (X,Y, Z). Cameras are in part defined by a set of known
intrinsic parameters, such as focal length, which is defined in

Fig. 3: Deprojection (image derived from [20]).

Fig. 4: Human detection in the camera’s view.

pixels for width (fx) and height (fy). A known principal point
(cx, cy) lists the center of projection in pixel coordinates.

In 3D image processing, deprojection takes a point within
the camera’s image (in pixel coordinates) and a depth (in
meters) as input and outputs the pixel’s location on the 3D
physical space. It follows a simple system of equations (where
τ is the depth of pixel, denoted by the red line in Figure 3):

a = (u− cx)/fx (1)

b = (v − cy)/fy (2)

X = τ × a (3)

Y = τ × b (4)

The calculation of Z follows in a straight-forward manner
once X, Y, and τ are known (i.e., derive Z using the distance
formula from the origin). Most cameras deployed today are
monocular, which means depth cannot be inferred from the
camera alone. When an 802.11 FTM AP is colocated with a
monocular camera, however, the depth τ can be derived from
the AP’s FTM distancing measurement. By combining AP
and camera information, a single AP colocated with a single
monocular camera can infer the 3D position of an intended
wireless object in the camera’s view.

To determine the pixel whose depth should be acquired, ob-
ject detection techniques can be employed. Shown in Figure 4,
object detection (or more specifically human detection) finds



the presence of an object (human) in an image and draws a
bounding box around the object (human). Bounding boxes are
typically rectangular, although more advanced segmentation
techniques can also be employed [21]. In CALM, the center
of a bounding box (i.e., the approximate center of a human)
is used as the pixel in which depth is applied.

B. Multiple APs and camera

Many Wi-Fi localization techniques utilize measurement
data from multiple access points since there is usually over-
lapping coverage in production deployments. CALM can also
combine readings from multiple APs to infer location. Before
describing how CALM integrates with multiple APs, tradi-
tional Wi-Fi FTM-based localization is first described.

With distance measurements from at least three APs, trilat-
eration techniques can be employed to determine the physical
coordinates of an object. Trilateration algorithms search a set
of candidate points in physical space, calculating the mean-
squared error (MSE) from the measured FTM distance reading
to the candidate point’s actual distance for each AP. The
algorithm outputs the candidate point with lowest MSE. For
example, to obtain a user’s location via trilateration using Wi-
Fi FTM readings, the following equation can be used:

Pt = argmin(
1

N

N∑
1

(τi − τ̂i)
2) (5)

where N is the number of APs, τi is the measured distance
from APi obtained via FTM readings, and τ̂i is the candidate
point under consideration’s distance to APi. Optimization
algorithms such as Limited-memory BFGS [22] determine
the candidate points that are searched, and Pt is the output
coordinate that minimizes MSE over all searched points.

With multiple APs in CALM, the MSE search can be
modified because the camera gives important information
about the object’s location without ambiguity. Say a specific
object is located in the pixel coordinate space at (u, v), but the
depth of the object is unknown. This is true for all monocular
cameras. By considering the object can be any depth away
from the camera, the physical space in which the object resides
must fit on a single straight line. We call this line the camera
fitting line, which is the red line in Figure 3. Armed with this
insight, we modify the MSE search with an extra constraint:
only points along the camera fitting line should be considered.
In detail, the first candidate point is set to a depth of 0.1m
on the camera fitting line and its physical space coordinate is
calculated from equations 3 and 4. To search along the camera
fitting line, the depth of each candidate point is increased at
0.1m increments. As in equation 5, the candidate point that
minimizes the distancing error over all APs is selected as the
final output point.

Figure 5a visualizes FTM Wi-Fi and CALM-based local-
ization for the measurement taken in Figure 4. There are
three APs in the figure (each denoted by a red ×), a camera
colocated with AP1 at (0,0), and the ground truth location of
the user at the red dot (•). The black circles’ radii represent
the distance to the object as measured by each APs’ FTM
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Fig. 5: Localization with CALM.
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Fig. 6: Arbitrary camera positioning in CALM.

reading. With FTM Wi-Fi trilateration (denoted MSE Wi-Fi,
dark blue dot •), the projected location is 4.79m away from
the ground truth, mostly because the APs near the back of the
room (AP2 and AP3) over-estimate their distance. The camera
fitting line (blue line), however, ensures the MSE search is
only performed on points within the line, and hence CALM-
based measurement gives an error of 2.51m (cyan dot •).

In Section III-A, the camera was required to be colocated
with a single AP. With multiple APs, the camera can be
more flexibly placed in the topology. With a single AP and
a camera at an arbitrary position, searching along the camera
fitting line may yield two points with minimized MSE, as
shown in Figure 6a. Here, only users placed on the blue
and red lines produce unambiguous results, whereas users
placed on all other possible camera fitting lines would intersect
with the circle twice, leaving two possible user locations. By
deploying more APs, positioning the camera away from the
APs eliminates most of the ambiguous cases. For example,
the red line in Figure 6b shows an unambiguous result. Note
some AP configurations may still result in issues, such as when
all APs are in a line (here the dotted green line provides an
ambiguous result). But such configurations also cause issues
with the FTM-based Wi-Fi scheme. The camera may help
disambiguate the dotted green line case in Figure 6b by
perhaps examining the relative size of the user in the image,
but such optimizations are left for future work.

C. Context-aware AP weighting

In addition to providing the camera fitting line, the camera
reveals useful contextual data to the localization scheme. One
interesting enhancement is to consider the orientation of the
user with respect to the deployed APs. Numerous studies have



shown the human body can attenuate signals when the body
is between a mobile device and an AP [16], [17]. These non-
line-of-sight (NLoS) scenarios can force wireless signals to
travel farther distances via a reflected path, which in turn
causes higher inaccuracies with FTM ranging. In contrast,
when users are facing an AP with clear line-of-sight (LoS),
a direct path is more likely, which results in more accurate
distance ranging. Indeed, this can be seen in Figure 5a, where
the user is facing AP1 but not facing the other APs (AP2

and AP3). The distancing measurement from AP1 is much
more accurate than the distancing measurement from the non-
facing APs, and worse yet the non-facing AP error causes
Wi-Fi trilateration techniques to perform poorly.

As a result, CALM can use the camera to analyze the
orientation of the user and infer which APs the user is facing.
The computer vision community has already designed many
highly accurate user orientation techniques [12], [23] that can
be co-opted for this purpose. At a high level, CALM applies
weights to an AP’s distancing estimate based on whether the
user is facing the AP. The scheme first estimates a user’s
location using all APs with equal weights (in other words,
simply performing the steps outlined in Section III-B). This
gives an initial location estimate. Next, the camera image is
fed to the user orientation neural network, which outputs the
orientation. From there, two lists of APs are created: APLS in
which the user is likely facing those APs and APNS in which
the user is not facing those APs. Then, the MSE search in
equation 5 can be modified:

Pt = argmin(
1

N
(

APNS∑
1

wNS(τi− τ̂i)
2+

APLS∑
1

wLS(τi− τ̂i)
2))

(6)
where wNS and wLS are the weights applied to NLoS and
LoS readings, respectively. Larger weights should be applied
to LoS readings since they are likely to be more accurate than
NLoS readings. Just as before, only potential locations on the
camera fitting line are considered.

While seemingly simple, the scheme is effective. Figure 5b
shows the output of this scheme, denoted CALM-context (cyan
dot •), from the ongoing Figure 4 example. CALM-context
obtains an error of only 0.33m, outperforming the Wi-Fi
baseline by over 14×. In the future, the technique could be
optimized by adjusting the weights with more sophistication,
such as additionally including distance from the AP as part of
the weighting, analyzing the environment in a more complex
fashion (i.e., explicitly detecting reflectors or columns in the
environment that may block an AP a user is facing [24]), or
using advanced techniques to infer wireless signal character-
istics from an image (as studied in [25]).

IV. EVALUATION

This section first details the methodology of our approach,
followed by a description of the evaluation results.

A. Methodology
Our experiments utilize commercially off-the-shelf equip-

ment. An Intel RealSense D435i depth camera is used as the

Room Size (m) # pts AP2 loc AP3 loc 3D Or
Conference 8.7 x 19.6 41 -3.4, 16.3 2.8, 16.3 N 1

Class1 11.8 x 12.6 72 -5, 11.2, 1.8 4.5, 11.2, 1.8 Y 1
Class2 9.1 x 8.8 26 -3.4, 6.5, 0.5 3, 6.5, 0.5 Y 1
Class3 11.4 x 13.2 50 -6.6, 11.6, 1.5 2.3, 11.6, 1.5 Y 1
Class4 8.8 x 12.2 49 -4.2, 9.6 4.2, 9.6 N 1

Study hall 11.2 x 23.5 49 -4.5, 17.2 4.1, 17.2 N 1
ML Lab 4.6 x 12.1 23 -1.3, 11.5 3.2, 11.5 N 1

Cafe 8.4 x 13.6 54 -6.3, 13.6 4.4, 13.6 N 1
Systems Lab 15.3 x 20.8 32 -5.3, 14.6 5.3, 14.6 N 1
Conference 8.7 x 19.6 37 -3.7, 16.3 2.5, 16.3 N 2

Class2 9.1 x 8.8 15 -3.5, 6.4, 0.5 3.3, 6.4, 0.5 Y 2
Class3 11.4 x 13.2 59 -6.5, 11.2, 1.5 2.4, 11.2, 1.5 Y 2

Systems Lab 15.3 x 20.8 32 -5.3, 14.6 5.3, 14.6 N 2

TABLE I: Experimental information. AP1 is located at the
origin. Or = Orientations.

camera in our setup [19]. The D435i camera can obtain 3D
coordinates with a range up to about 10 meters, depending
on lighting, scene, and calibration. When using the camera
for CALM’s evaluation, we do not use the 3D information
provided by the camera, instead using the output of the
monocular RGB camera. There exists up to three Google WiFi
APs, which support FTM measurement. One of the APs is
colocated with the camera (denoted AP1) and the other two
APs (denoted AP2 and AP3) are typically positioned 10-20
meters from the first AP. We utilize Google Pixel 3 phones as
the client, and run the WifiRttScan Android app [26] to collect
the FTM measurements. The channel width is configured to
80 MHz. For each AP, a burst of 50 FTM measurements
is collected and the minimum of the measurements is used
for trilateration (this appears to give the best performance for
legacy Wi-Fi trilateration). In addition to FTM, we also test
our approach against SpotFi [14]. Three Qualcomm IPQ8076A
chipset-based APs using 4 antennas obtain CSI data, with each
AP positioned similar to its FTM-based counterpart. SpotFi
methodology is taken from [14]: channel width is 80MHz,
AoA readings are taken over 10 packets, and a clustering
algorithm is used to find the AoA of the highest-likelihood
direct path. We compare the following approaches:

• Ground truth The actual coordinates obtained with a
high-precision laser ranging device.

• Camera We obtain the 3D location estimates from the
Intel D435i SDK.

• Wi-Fi A trilateration approach, in which FTM measure-
ments are collected from all three APs and the MSE
dictates final location.

• SpotFi A widely-cited localization approach that mini-
mizes AoA and RSSI-based distance errors.

• CALM-1AP Our approach using FTM readings from a
single AP (AP1), which is co-located with the camera.

• CALM-3AP Our approach searching the MSE using the
camera’s fitting line over all three APs (Section III-B).

• CALM-context User orientation gleaned from the cam-
era is used to weight each AP (Section III-C).

Table I details the rooms used in our experiments. For each
room, the following are listed: the room size, the number
of points considered in each room, AP2 and AP3 locations,
whether the points we localize are on a 2D or 3D plane,
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Fig. 7: Microbenchmarks.

and how many orientations the user positions during the test.
We break the dataset into two categories: single orientation
results and multiple orientation results. For single orientation
results, the user is always facing the camera and the colocated
AP1. For multiple orientation results, the user either directly
faces the camera or faces the opposite direction. In total,
we analyze over 102,300 wireless readings from a variety
of rooms such as classrooms, labs, cafes, study areas, and
conference rooms. Comparison against SpotFi required two
sets of APs to be deployed, and thus experiments were
performed over a subset of the rooms. From Table I, Class4
(shown in Figure 12a) was chosen as a representative room
and Conference (Figure 4) was chosen for a challenging
room with significant multi-path.

Techniques like CALM and SpotFi must know the orienta-
tion of the cameras and APs to accurately infer user locations.
With CALM, the center of the camera could be aligned with
a known point on an opposite wall to obtain ground truth
reference points. SpotFi and CALM could also obtain ground
truth orientation by collecting a few points at known locations
and then adjusting AP and camera orientation to minimize
error. The latter technique is performed in this paper.

B. Microbenchmarks

This section provides a number of microbenchmarks to help
understand the performance of our scheme.

Equipment calibration and facing validation Similar to
other studies [17], we find FTM readings can sometimes
under-report distances to a device. Figure 7a shows a CDF
of the distancing error from each AP to the wireless client
when the human is facing the AP. This data is collected from
our multiple orientation dataset. We find (i) APs can under-
report distances in these cases and (ii) different APs may have
different median errors. Because CALM relies on accurate
FTM measurements, especially with a user facing an AP, we
use the median error as a fixed offset for every AP’s reading
in our experiments. Note this offset only needs to be measured
once. For the Wi-Fi baseline, we use whichever is best (using
the offset versus not using the offset).

The graph also shows the CDF of ranging errors when the
user is not facing an AP. NLoS ranging measurements overes-
timate distances compared to LoS ranging measurements. The
graph verifies this trend and justifies our reasoning to weight

facing APs more heavily in CALM-context. Note as opposed
to the facing FTM readings, we do not apply NLoS offsets
to the FTM readings since such offsets are likely a product
of the environment. We leave as future work to study how to
incorporate NLoS offsets in more detail.

Orientation accuracy We utilize WHENet [12] to obtain
user orientation data. Camera images are fed into WHENet,
which outputs an orientation and allows us to determine which
APs the user is facing. We do not provide any of our images
for training the network nor do we run any type of transfer
learning– we simply run the network off-the-shelf. The average
accuracy over the whole dataset is 0.97, with the lowest
accuracy being 0.88 (Conference room). Over our whole
dataset, using WHENet introduces roughly 5.5% localization
error when compared to an oracle-based scheme that knows
ground-truth orientations.

Angle of arrival (AoA) error CALM’s camera fitting line
essentially provides an angle of arrival (i.e., the angle in
which the user is offset from the center of the camera’s
projection). Figure 7b shows a CDF of the error, defined
as the absolute value of the difference between the actual
angle and the measured angle. The median error for CALM
over all rooms is 0.96 degrees. For the subset of rooms
with SpotFi measurements, CALM’s median error is 0.90
degrees while SpotFi in same rooms has a median AoA error
of 10.73. Hence, camera-based AoA derivation significantly
outperforms SpotFi. We were originally quite surprised that
some of the camera’s angle errors are relatively high (6-10
degrees) for CALM, but a careful analysis of the data showed
these points typically occur in two cases. First, when users are
close to the camera, small errors in object detection manifest
themselves as large angle errors. Figure 7d shows the error is
much higher when the object is at a depth closer to the camera.
Second, when a user appears near the edge of the camera’s
field-of-view, distortion can introduce error [27]. It may be
possible to apply anti-distortion techniques to mitigate these
errors, but we find overall performance to still be reasonable
and hence leave such optimizations to future work.

Weight sensitivity CALM-context weights readings from APs
the user is facing more heavily than non-facing AP readings.
Figure 7c shows the average error, over the multiple orientation
dataset, of CALM-context with varying facing weights (non-
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Fig. 8: CDF of errors over all rooms for different orientations.

Room Camera Wi-Fi CALM-1AP CALM-3AP CALM-context
Conference 3.637 3.538 1.011 1.752 0.937

Class1 2.313 0.974 0.664 0.635 0.640
Class2 1.060 1.101 0.540 0.728 0.544
Class3 2.486 1.436 0.651 0.956 0.734
Class4 1.728 1.146 0.744 0.714 0.719

Study hall 3.917 1.352 0.490 0.599 0.457
ML Lab 1.634 1.807 0.613 0.791 0.575

Cafe 2.793 2.900 0.371 0.875 0.436
Systems Lab 2.563 1.251 0.675 0.625 0.629

Average 2.459 1.723 0.640 0.853 0.630

TABLE II: Average error (in meters) for single orientation
rooms. Green highlights the best performer per room.

facing weight wNS is set to 1). The scheme is robust to a
variety of weights, with only a small difference in performance
based on weights in the range of 10 to 100. In our experiments,
we set the weight to 11.5. More advanced techniques in the
future may set the weight on a per-room basis (we did see
benefits for such an approach), but we aim for simplicity in
deployment and find a single weight works well.

Pipeline runtime It takes 0.73s to run the CALM pipeline
on a laptop with an 8th Gen Intel Core i5-8265U CPU and
8GB DDR4 memory (0.65s for YOLOv3, 0.07s for WHENet,
0.014s for additional CALM logic). YOLOv3 is run on the
CPU, but latencies can be as low as 30ms if run on a GPU [9].

C. Localization Results

This subsection analyzes localization performance. First, a
deep dive of CALM’s performance is presented, with results
from single and multiple orientation datasets discussed. After-
ward, CALM is compared to SpotFi on a subset of the dataset.

1) Single Orientation Results: Single orientation results
span 9 rooms (Table I), the results are analyzed over a series of
graphs. Figure 8a shows a CDF of location error over all single
orientation rooms for Camera, Wi-Fi, CALM-1AP, CALM-
3AP, and CALM-context. Table II shows the average error
for each scheme, broken down on a per-room basis. Figure 9
shows the CDF of errors for each room within the dataset.

A number of trends can be noted from the data. First,
CALM-1AP and CALM-context perform admirably, with av-
erage error rates of 0.64m and 0.63m, respectively. This rep-
resents a 2.7× increase over Wi-Fi error (1.72m) and a 3.9×

Room Camera Wi-Fi CALM-1AP CALM-3AP CALM-context
Conference 4.175 3.445 3.006 2.282 2.070

Systems Lab 2.483 1.654 1.597 1.265 0.975
Class2 1.065 0.960 1.174 0.925 0.607
Class3 2.194 1.558 1.388 1.273 1.065

Average 2.479 1.904 1.791 1.436 1.180

TABLE III: Average error (in meters) for multiple orientation
rooms. Green highlights the best performer per room.

increase over Camera error (2.46m). CALM-1AP outperforms
CALM-3AP (0.85m average error) because the user is facing
AP1 (the single AP), which typically gives accurate distancing
information. When two other APs are involved, in which the
user is not facing, the average error increases because the
two APs add noise to the localization process. CALM-context
also uses three APs, but instead intelligently weights AP1’s
measurements higher than AP2 and AP3’s measurements.
As a result, CALM-context is able to closely track or beat
CALM-1AP’s performance in many cases. On a per-room
basis, CALM-1AP and CALM-context show gains over Wi-Fi
ranging from 1.4-7.8× and 1.5-6.6×, respectively. The per-
room CDFs show the CALM techniques perform well, with
the camera performing relatively better on the smaller rooms.

2) Multiple Orientation Results: Next, results are analyzed
when the user faces AP1 and then also turns 180° at each
location. Figure 8b shows the CDF of location errors of each
scheme over all four multiple orientation rooms. Table III
shows the average error of each approach, broken down per
room. Figure 10 shows the CDFs for each room. While
CALM-3AP and CALM-context again both outperform Wi-
Fi (average improvements of 1.3× and 1.6×, respectively),
different from the single orientation results, CALM-1AP gain’s
are reduced (1.06×). In the single orientation dataset, the user
was always facing AP1. However, with multiple orientations,
CALM-1AP can perform poorly when the user is not facing
the AP colocated with the camera (i.e., AP1). One should note,
however, that CALM-1AP, which requires one AP, is able to
achieve similar levels of accuracy as the baseline Wi-Fi, which
requires three APs. On a per-room basis, CALM-context’s
gains over Wi-Fi range from 1.5-1.7×.
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(c) Class2
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(d) Class3
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(e) Class4
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(f) Study Hall
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(g) ML Lab
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(h) Cafe
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(i) Systems Lab

Fig. 9: CDF of errors for each single orientation room.
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(c) Class3
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(d) Systems Lab

Fig. 10: CDF of errors for each multiple orientation room.
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Fig. 11: CDF of location Errors with SpotFi.

3) Combined Orientation Results: Next, we analyze over
the whole dataset. Figure 8c shows a CDF of each scheme over
all rooms. The average improvements of CALM-1AP, CALM-
3AP, and CALM-context over Wi-Fi are 1.83×, 1.76×, and
2.25×, respectively.

4) SpotFi Comparison: Finally, we compare to SpotFi on
a subset of the single orientation rooms: Conference as
pictured in Figure 4 and Class4 as shown in Figure 12a.
Figure 11 shows the location error over both rooms for Wi-Fi
FTM, SpotFi, CALM-3AP, and two new techniques. SpotFi-
FTM uses FTM instead of RSSI to estimate distance from

(a) SpotFi Experiment (b) Pairing Experiment

Fig. 12: Rooms for experiments.

the APs and CALM-AoA uses AoA from the AP2 and AP3
instead of FTM. CALM-AoA still uses the camera fitting
line technique outlined in Section III-B and hence shows
how CALM can be integrated into AoA-based techniques.
Note the CALM techniques do not use the user orientation
optimization. Table IV shows the average errors. The results
indicate a number of trends. First, FTM typically outperforms
AoA (i.e., SpotFi) on our dataset. SpotFi’s errors mostly
come from incorrect AoA assessment, and hence SpotFi-FTM
and SpotFi (which uses RSSI instead of FTM) closely track
one another. CALM-AoA improves either SpotFi technique
by forcing location along the highly-accurate camera-fitting
line: average errors reduce from 2.5m to 2.3m. CALM-3AP
improves CALM-AoA by 2.1× on average because AoA has
higher errors in our testing environment. Last, CALM-3AP
improves SpotFi by 2.3× on average.



Room SpotFi FTM SpotFi-FTM CALM-AoA CALM-3AP
Conference 2.605 4.589 2.7332 2.446 1.217

Class4 2.411 1.148 2.372 2.198 0.916
Average 2.508 2.868 2.552 2.322 1.066

TABLE IV: Average error (in meters) for SpotFi comparison.
Green highlights the best performer per room.

Camera Position Wi-Fi CALM-1AP CALM-3AP CALM-context
VC1 1.904 1.746 1.422 1.068
VC2 1.904 0.896 1.026 0.889
VC3 1.904 1.157 1.044 0.990
VC23 1.904 - 1.238 1.050

TABLE V: Average error (in meters) over multiple orienta-
tion rooms with virtual cameras. Green highlights the best
performer per room.

D. Virtual Camera Results

This section introduces a novel evaluation methodology
termed the virtual camera, where the camera is virtualized
and placed at arbitrary locations within each room. Because
the human can often be detected in an accurate manner via the
camera, the angle-of-arrival error is typically small in CALM
(Figure 7b). With virtual camera, the error is assumed to
be zero, and hence the camera fitting line can be drawn
from the virtual camera through the human’s known location.
User orientation is also assumed correct via an oracle. Each
AP’s FTM measurements can be reused from the previous
experiments to provide a location estimate. Therefore, virtual
camera results give a lower-bound on CALM localization
error, but also give the flexibility to perform “what-if” analysis
of moving the camera to different positions in the room.

Figure 13 shows CDFs over all multiple orientation rooms
for different virtual cameras, and Table V shows the average
location errors. VCi indicates the camera is located at APi, and
VC23 is when the virtual camera is placed half-way between
AP2 and AP3 (note CALM-1AP cannot be evaluated in the
VC23 case because it requires colocation to an AP). The
results show CALM works effectively regardless of camera
position. Interestingly, the last row (Average) in Table III can
be directly compared to the VC1 result in Table V because
the camera is located at AP1 in each case. The schemes
that do not utilize orientation, CALM-1AP and CALM-3AP,
perform negligibly worse without the virtual camera, showing
CALM’s mechanism to generate the camera fitting line adds
little error to overall accuracy. CALM-context sees about 10%
degradation, which mostly comes from orientation estimates
being off. Overall, the virtual camera results show CALM-
context can increase accuracy over Wi-Fi by 1.78-2.14×.

E. Multiple Users

Our previous experiments located a single user. With multi-
ple users the wireless device in the RF domain must be paired
with its associated user in the visual domain. Our study mostly
focuses on how accurate camera and Wi-Fi localization can be,
and the pairing issue can be addressed by previous work [28],
[29], [30], [27], [31]. Such schemes pair movement patterns
of users from the Wi-Fi and vision domains and even work
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(c) Virtual Camera3
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Fig. 13: CDF of errors for Virtual Cameras over all multiple
orientation rooms.

in cases when the number of users does not equal the number
of devices. Prior pairing works report high accuracies, ranging
from 87-95% [28], 84-94% [30], 95% [29], and 90% [31].

Regardless, we also test the accuracy of pairing within
our testbed, as shown in Figure 12b with four users in
Class3. Here, users randomly position themselves in the
room over 25 different trials. We locate Wi-Fi devices using
the FTM technique and estimate the users’ physical locations
from the image via a two-step process. First, YoLo detects
human bounding boxes. Second, the pixel within the center
of the bounding box is projected along the camera fitting
line by estimating the depth of the user from the size of
a bounding box. In a separate room, we previously trained
a linear model relating the size of a bounding box to the
user’s depth. This linear model is used in testing to translate
bounding box sizes into depth and obtain physical coordinates
via the equations in Section III-A. Running the Hungarian
algorithm [32] on these two sets of points yields 78% pairing
accuracy. We believe accuracy can be further improved by
analyzing user trajectories and by locating cameras near the
ceilings– in our scheme cameras near waist-height often leave
users overlapping as seen in Figure 12b.

V. RELATED WORK

Related work covers Wi-Fi localization, Wi-Fi localization
with cameras, infrastructure-based localization, image process-
ing, and vision-based localization.

Wi-Fi localization: Radar [4] is a seminal paper in Wi-Fi
localization, using received signal strength (RSS) to localize
users. Since then, research in Wi-Fi localization has been
vast. Techniques have ranged from using RSS, angle-of-arrival,
multipath, backscatter, various frequencies and time-of-flight
[33]. CALM is complementary to the large body of previous



research. Much of the research aims to overcome localization
issues due to multipath, reflections, or varying and dynamic
wireless conditions. As wireless techniques improve, they can
be integrated into CALM’s camera-based schemes.

Wi-Fi localization with cameras Some localization tech-
niques perform localization when Wi-Fi is augmented with
additional equipment. For example, Irshad et al. [27] augment
a 3D camera’s performance by using Wi-Fi localization when
outside the camera’s accurate field-of-view. iVR [34] uses
multiple cameras, an accelerometer on a user device, and
wireless RSS-based localization. CALM does not require extra
user participation or equipment, nor does it require multiple
cameras. EV-Loc [31] integrates Wi-Fi RSS readings and
visual signals for localization by first finding locations in
each domain. In the vision domain, an intensive, offline data
collection phase captures images of a user at every location.
In the wireless domain, path loss models obtain distance
estimates from RSS values. After obtaining both location
estimations, points from both domains are matched, and the
final location is found by weighting points in each domain.
EV-Human [35] is an extension of EV-Loc that compensates
for human body attenuation of wireless signals by determining
the positioning of the user and device via cameras. There exist
several differences between EV-Human and CALM. First, EV-
Human is RSS-based and utilizes an empirically-based RSS
compensation technique, both of which require significant
fingerprinting and overhead. CALM has no such overheads
and applies a simple and robust weighting scheme to FTM-
based APs in order to obtain accurate localization. EV-Human
also requires multiple cameras, and multiple nearby APs to
be colocated on the same channel, to in part compensate RSS
due to orientation. CALM works with a single camera and
single AP, and neighboring APs need not be tuned to the same
channel. In summary, our work explores novel ideas when
compared to previous work: the camera fitting line approach,
single AP and camera localization via deprojection, simple and
robust context-based AP weighting, and the virtual camera
methodology. Last, RGB-W [36] maps wireless signals to
images and then utilizes a dictionary-based technique and a
cascade of convex solvers to improve localization. RGB-W re-
lies on a series of complex models to generate noise detection
estimates, wireless radius ranges, and error bounds. CALM
does not require offline data collection, multiple cameras or
APs, nor sophisticated wireless models.

Finally, another class of work locates wireless devices to
be displayed in augmented reality applications [37]. CALM is
likely to help in these scenarios because an augmented reality
device already contains a camera.

Image processing There is vast literature on object/human
detection and tracking [38], [9], [39]. These schemes achieve
high accuracy and are continuously being developed to run
efficiently. CALM can judiciously utilize advances in this area
to improve performance.

Vision-based localization Stereovision is a common tech-

nique utilizing two cameras to measure distance. Some re-
cent works utilize a deep convolutional neural network for
computing the depth of an RGB image [40], [41]. These
works typically require significant amounts of training data
and usually output relative, rather than absolute, depth.

VI. DISCUSSION AND CONCLUSION

This section discusses limitations and opportunities of our
work before concluding.

Issues with vision-based optimizations Our work assumes
the user is located within the camera’s field-of-view. Users
behind the camera, too far away, or obstructed by another
object cannot explicitly be localized with CALM. A user
temporarily obstructed by another object could be tracked over
time, however, and these movement patterns could help infer
past or current locations. In addition, it may be possible to
use the absence of a user in the field-of-view for benefit. Such
information could be useful for geo-fencing by determining if
a user is inside or outside a room. We leave such optimizations
as future work.

Vision-based techniques can suffer from issues such as poor
lighting. We assume cameras are deployed in high-value areas
with sufficient lighting. In summary, CALM is always a net
win: when cameras are available, accuracy is improved and
when cameras (or viewpoints) are unavailable, legacy Wi-Fi
techniques can be employed to maintain previous performance.

Non-human Wi-Fi users While we assume humans are
located via their wireless devices, other non-human subjects
could also be localized. For example, a robot vacuum could be
localized as long as a robot vacuum object detection scheme
can be derived. Given image processing techniques can obtain
human-level object detection accuracy on ImageNet’s [42]
thousands of classes, such alterations seem plausible.

Conclusion This paper explores how camera and Wi-Fi
infrastructure can be used together to improve localization.
Today, cameras with network connectivity are being increas-
ingly deployed, and the cameras are typically outfitted with
intelligence or connected to an edge computing framework.
As such, we explore how a single AP colocated with a single
camera can locate users in 3D physical space, and then extend
our work to support multiple APs and cameras at arbitrary
positions. Our system, called CALM, contains several novel
contributions: a camera line fitting approach to restrict the
search space of candidate locations, single AP and camera
localization via a deprojection technique inspired from 3D
cameras, simple and robust AP weighting that analyzes the
context of users via the camera, and a new virtual camera
methodology. We partner with a major wireless and camera
vendor to analyze today’s deployments and further motivate
our scheme. Our evaluation over 9 rooms and 102,300 wireless
readings shows CALM can obtain decimeter-level accuracy,
improving performance over Wi-Fi techniques like FTM by
2.7× and SpotFi by 2.3×.
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